Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
Add more filters










Publication year range
1.
Chemosphere ; 354: 141592, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38467196

ABSTRACT

In this study, we utilized a navel hybrid material, prepared by fusing fluorescent Carbon Dots SyCDs, derived from syrup bottles, with curcumin. This innovative approach not only offers significant advancements in antimicrobial activity and bioimaging but also represents a stride in sustainable and eco-friendly nanotechnology. The core of our study is the development of an efficient, cost-effective, and environmentally conscious method for synthesizing SyCDs. This is achieved by repurposing waste syrup bottles, thus addressing the pressing issue of plastic waste. The incorporation of curcumin, renowned for its biological properties, enhances the luminescent characteristics of SyCDs and augments their functionality. This combination overcomes the inherent limitations of curcumin when used in isolation. The hybrid material exhibits enhanced antimicrobial properties and proves to be a potent alternative to conventional fluorescent dyes for bioimaging, marking a substantial leap in the field of sustainable nanomaterials. Our work not only demonstrates the versatile applications of luminescent SyCDs in health and environmental science but also underscores the potential of sustainable approaches in addressing global environmental challenges. This study, represents a significant contribution to the domain of sustainable nanotechnology, highlighting the transformative power of integrating waste management with advanced material science.


Subject(s)
Anti-Infective Agents , Curcumin , Quantum Dots , Curcumin/pharmacology , Anti-Infective Agents/pharmacology , Carbon , Consciousness , Fluorescent Dyes
2.
Environ Res ; 250: 118513, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38368918

ABSTRACT

Carbon dots (CDs) are an emerging type of carbon nanomaterial with strong biocompatibility, distinct chemical and physical properties, and low toxicity. CDs may emit fluorescence in the ultraviolet (UV) to near-infrared (NIR) range, which renders them beneficial for biomedical applications. CDs are usually made from carbon precursors and can be synthesized using top-down and bottom-up methods and it can be easily functionalized using different methods. For specific cases of biomedical applications carbon dot functionalization augments the materials' characteristics. Novel functionalization techniques are still being investigated. This review will look at the benefits of functionalization to attain a high yield and various biological applications. Biomedical applications such as photodynamic and photothermal therapy, biosensing, bioimaging, and antiviral and antibacterial properties will be covered in this review. The future applications of green synthesized carbon dots will be determined in part by this review.


Subject(s)
Carbon , Carbon/chemistry , Sustainable Development , Quantum Dots/chemistry , Green Chemistry Technology/methods
3.
Environ Res ; 238(Pt 2): 117182, 2023 12 01.
Article in English | MEDLINE | ID: mdl-37739153

ABSTRACT

Luminescent carbon dots have gained significant attention in various fields due to their unique optical properties and potential applications. Here, the study was aimed to propose a novel and sustainable approach for the synthesis of luminescent carbon dots (ICDs) using IV (Intravenous) medical bag waste. The ICDs were synthesized through a facile and cost-effective method that involved the carbonization of IV bag waste followed by surface functionalization with chitosan. The synthesized ICDs were characterized using UV-Visible spectrum (UV-Vis), Fourier Transform Infrared Spectroscopy (FT-IR), X-Ray Diffraction analysis (XRD), Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM). The size of the ICDs is between 2 and 8 nm. The ICDs effectively inhibited the growth of both gram positive and gram negative bacterial strains with the inhibitory activity in the range of 11-14 mm and 12-18 mm, respectively. Results of antibiofilm activity of ICDs varying concentrations (50 and 100 µg/ml) showed that it effectively distorted the biofilm architecture and thereby validated its promising potentials. In vitro antioxidant activity showed remarkable DPPH radical scavenging potentials of ICDs (33.4%-70.1%). Results of MTT assay revealted that ICDs showed potent cytotoxic effect on HeLa cells in a dose dependant matter (25-400 µg/ml). Furthermore, when HeLa cells were excited at wavelengths of 380 nm, 440 nm and 540 nm, cell-imaging experiments using ICDs revealed the presence of blue, green, and red fluorescence. This innovative method not only addresses the issue of IV bag waste in a sustainable manner but also opens up exciting possibilities for the advancement of versatile carbon-based materials in the field of biomedicine.


Subject(s)
Anti-Infective Agents , Chitosan , Metal Nanoparticles , Humans , Chitosan/chemistry , HeLa Cells , Spectroscopy, Fourier Transform Infrared , Carbon/chemistry , X-Ray Diffraction , Anti-Bacterial Agents/pharmacology , Metal Nanoparticles/chemistry
4.
Environ Res ; 237(Pt 2): 116990, 2023 Nov 15.
Article in English | MEDLINE | ID: mdl-37640096

ABSTRACT

Addressing the global challenge of persistent waste through an eco-conscious strategy to transform it into valuable and versatile materials holds great significance in today's swiftly evolving world. By adopting a sustainable approach, we can repurpose waste syringes composed of polytetrafluoroethylene (PTFE) into fluorescent carbon dots (CDs) using a simple hydrothermal process. This research harnessed hyaluronic acid to carbonize and modify discarded plastic syringes, resulting in the creation of luminescent syringe carbon dots (SCDs). Rigorous analysis employing diverse techniques delved into their optical attributes, size distribution, and surface characteristics. Extensive biocompatibility assessments using established assay methods confirmed the safety of the derived SCDs, unveiling their potential antibacterial and antifungal traits. Additionally, a confocal microscope was employed to evaluate the cellular imaging capabilities of SCDs on HeLa cells. Notably, at bactericidal concentrations, SCDs exhibited mild cytotoxicity towards mammalian cells, showcasing cell viability surpassing 91.07% at 1 mg/mL. This pioneering exploration paves the way for potential applications of SCD-based nano-bactericides across various biomedical domains. The initial outcomes established herein mark a significant stride towards the creation of cost-effective and ecologically sound fluorescent probes for biomedical imaging, aimed at combating microbial infections. By ingeniously reutilizing polyethylene terephthalate (PET), this investigation offers a sustainable remedy to address the ecological predicaments linked with plastic waste. In doing so, it charts a course towards contributing to the development of affordable, eco-friendly solutions, heralding a promising prospect for a cleaner, healthier environment.

5.
Chem Commun (Camb) ; 59(59): 9056-9065, 2023 Jul 20.
Article in English | MEDLINE | ID: mdl-37377149

ABSTRACT

In the confined space of supramolecular systems, the substrate can be forced into a reactive conformation and labile intermediates may be stabilized while isolated from the bulk solution. In this highlight, unusual processes mediated by supramolecular hosts are described. These include unfavourable conformational equilibria, unusual product selectivities in bond and ring-chain isomerizations, accelerated rearrangement reactions through labile intermediates, and encapsulated oxidations. In the host, controlled or altered isomerization of the guests can occur via hydrophobic, photochemical and thermal interventions. The inner spaces of the hosts resemble enzyme cavities that stabilize labile intermediates not accessible in the bulk solvent. The effects of confinement and the binding forces involved are discussed and further applications are suggested.

6.
J Am Chem Soc ; 145(10): 5816-5823, 2023 Mar 15.
Article in English | MEDLINE | ID: mdl-36857099

ABSTRACT

A series of straight-chain (C7-C13) alkyl-O-methyl aldoximes (R-C(H)═NOMe) were synthesized with various functional groups at the remote ends (alkenes, halogen, -COOH, and NH2). Their isomers about the C═N bond showed ∼60-40% E-Z-ratio in organic solutions. Surprisingly, their confinement in a water-soluble capsule with benzoselenodiazole walls shows high selectivity for the cis-/Z-isomer. Their relative affinities for the chalcogen-bonded capsule at room temperature depend mainly on the guest chain length and functional groups. A chain length of 14 heavy atoms showed especially high E- to Z-isomer selectivity (>99%) and was used in separation. The E-Z isomerization occurred only in the capsular cavity at room temperature and was accelerated 10-fold by sonication. The Z-isomer selective binding, separation, and E-Z isomerization are supported by NMR, DOSY, and computational studies.

7.
Chem Asian J ; 17(15): e202200466, 2022 Aug 01.
Article in English | MEDLINE | ID: mdl-35644928

ABSTRACT

Groups on the upper rim of cavitands can play major roles in the recognition of small molecules. Water-soluble deep cavitands 1, 2 or 3 bearing the walls upper rim of imidazole, urea, and methyl urea, respectively, were synthesized and characterized as hosts of small-molecule guests. The vase forms of 1 or 2 are stabilized through H-bonding to solvent water molecules between adjacent walls. Various small alkyl organic molecules - alcohols, halides, cycloalkane derivatives and heterocycles - are efficiently bound in 1. For n-alcohols (C5 to C12), the -OH end is fixed at the upper rim and the alkyl parts are in the hydrophobic cavity. The longer alcohol guests (C7-C12) show coiling. Cycloalkane guests rotate rapidly on all 3 axes within the host cavity, while heterocycles show orientations placing their heteroatoms near the cavitand rim. Competition studies between alkyl chlorides, bromides and iodides showed preference for binding of iodides in 1. Competition between cavitands for hexyl halide guests halide showed the order 2>1>3.


Subject(s)
Cycloparaffins , Water , Alcohols , Ethers, Cyclic , Iodides , Models, Molecular , Resorcinols , Urea , Water/chemistry
8.
J Am Chem Soc ; 144(3): 1455-1463, 2022 01 26.
Article in English | MEDLINE | ID: mdl-35029384

ABSTRACT

Self-inhibition has been observed widely in hierarchical biochemical processes but has yet to be demonstrated in pure molecular physical rather than chemical or biological processes. Herein, we report an unprecedented example of self-inhibition during the supramolecular chirality induction, memory, erasure, and inversion processes of pillar[5]arene (P[5]) derivatives. The addition of chiral alanine ethyl ester to bulky substituent-modified P[5]s led to time-dependent chirality induction due to the shift in the equilibrium of the SP and RP conformers P[5]. Intriguingly, more chiral inducers led to more intensive final chiroptical properties but lower chiral induction rates. Thus, the chiral inducer plays the role of both activator and inhibitor. Such self-inhibition essentially arises from kinetics manipulation of three tandem equilibria. Moreover, the chiroptical properties could be memorized by replacing the chiral inducer with an achiral competitive binder, and the chiroptical signal could be erased and reversed by an antipodal chiral inducer, which also showed the self-inhibition property.

9.
J Org Chem ; 86(13): 8873-8881, 2021 07 02.
Article in English | MEDLINE | ID: mdl-34114823

ABSTRACT

We report the synthesis and characterization of a new water-soluble cavitand 1. The container features 2-aminobenzimidazole panels at the "rim" and pyridiniums at the "feet". In the solid state, a single-crystal X-ray structure of the organic-soluble precursor 2 showed a stable vase form. The structure is stabilized by hydrogen-bonded bridges between adjacent panels through solvents and ions. In aqueous solution, binding of hydrophobic and amphiphilic guest molecules to 1 was investigated using 1H NMR. Alkanes, alcohols, acids, diols, and diacids formed 1:1 host-guest complexes, and the guest conformations were deduced from characteristic chemical shift changes. In the presence of [Pd(ethylenediamine)(H2O)2·2NO3], cavitand 1 formed a complex incorporating two metals. The metal-coordinated cavitand also bound hydrophobic linear alkanes and difluorobenzene isomers in aqueous medium. The metallo-cavitand showed shape and size selectivity and was used to separate o-difluorobenzene from its isomers as observed by 19F NMR spectroscopy. The primary amino function of the cavitands offers possibilities for further elaboration to covalent clusters of these container compounds.


Subject(s)
Water , Hydrophobic and Hydrophilic Interactions , Magnetic Resonance Spectroscopy , Models, Molecular , Molecular Conformation
10.
Org Lett ; 22(14): 5273-5278, 2020 07 17.
Article in English | MEDLINE | ID: mdl-32418431

ABSTRACT

Several γ-cyclodextrin (γ-CDx) derivatives were used as chiral hosts for the photocyclodimerization of 2-anthracenecarboxylic acid (AC). The effect of pH on photoreactivity and stereochemical outcome of photoproducts was investigated. Upon changing the solution pH, the stereochemical outcome of HH cyclodimer 3 was inverted from 25.2% to -64.4% and 41.2% to -76.2%, respectively, in the photocyclodimerization of AC mediated by bis-quinoline-modified γ-CDx 7 and its N-methylated derivative 8.

11.
iScience ; 23(3): 100927, 2020 Mar 27.
Article in English | MEDLINE | ID: mdl-32169819

ABSTRACT

The design and development of specific recognition and sensing systems for biologically important anionic species has received growing attention in recent years, as they play significant roles in biology, pharmacy, and environmental sciences. Herein, a new supramolecular sensing probe L1 was developed for highly selective differentiation of nucleotides. L1 displayed extremely marked absorption and emission differentiation upon binding with nucleotide homologs of AMP, ADP, and ATP, due to the divergent spatial orientations of guests upon binding, which allowed for a naked-eye colorimetric differentiation for nucleotides. A differentiating mechanism was unambiguously rationalized by using various spectroscopic studies and theoretical calculations. Furthermore, we successfully demonstrated that L1 can be applied to the real-time monitoring of the enzyme-catalyzed phosphorylation/dephosphorylation processes and thus demonstrated an unprecedented visualizable strategy for selectively differentiating the structurally similar nucleotides and real-time monitoring of biological processes via fluorescent and colorimetric changes.

12.
Angew Chem Int Ed Engl ; 59(21): 8094-8098, 2020 May 18.
Article in English | MEDLINE | ID: mdl-31958199

ABSTRACT

A chiral electrochemically responsive molecular universal joint (EMUJ) was synthesized by fusing a macrocyclic pillar[6]arene (P[6]) to a ferrocene-based side ring. A single crystal of an enantiopure EMUJ was successfully obtained, which allowed, for the first time, the definitive correlation between the absolute configuration and the circular dichroism spectrum of a P[6] derivative to be determined. The self-inclusion and self-exclusion conformational change of the EMUJ led to a chiroptical inversion of the P[6] moiety, which could be manipulated by both solvents and changes in temperature. The EMUJ also displayed a unique redox-triggered reversible in/out conformational switching, corresponding to an occupation/voidance switching of the P[6] cavity, respectively. This phenomenon is an unprecedented electrochemical manipulation of the capture and release of guest molecules by supramolecular hosts.

13.
Org Lett ; 20(6): 1680-1683, 2018 03 16.
Article in English | MEDLINE | ID: mdl-29509016

ABSTRACT

Visible-light-driven enantiodifferentiating photodimerization of 2-anthracenecarboxylic acid (AC) sensitized by Schiff base Pt(II) complex-grafted γ-cyclodextrins leads the first triplet-triplet annihilation-based catalytic photochirogenesis. The syn-head-to-tail (HT) photodimer 2 was achieved in up to 31.4% ee at 61.0% conversion in the presence of 0.5% equiv of the photocatalyst.

14.
Chem Asian J ; 9(1): 146-52, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24347072

ABSTRACT

A simple, highly selective and sensitive colorimetric system for the detection of fluoride ion in an aqueous medium has been developed using 2-(2-hydroxyphenyl)-2,3-dihydroquinolin-4(1H)-one. This system allows selective "turn-on" fluorescence detection of fluoride ion, which is found to be dependent upon guest basicity. An excited-state proton transfer is proposed to be the signaling mechanism, which is rationalized by DFT and TD-DFT calculations. The present sensor can also be applied to detect fluoride levels in real water samples.


Subject(s)
Fluorescence , Fluorides/analysis , Protons , Quinolones/chemistry , Water Pollutants, Chemical/analysis , Colorimetry , Ions/analysis , Quantum Theory
15.
Chemistry ; 19(43): 14425-31, 2013 Oct 18.
Article in English | MEDLINE | ID: mdl-24115295

ABSTRACT

An aminocyclodextrin/Pd(OAc)2 complex is used as an efficient, reusable catalyst in the Mizoroki-Heck reaction of aryl halides/triflates with olefins to give carbon-carbon-coupled products in good to excellent yields. This simple, efficient catalytic system is applicable to a wide range of aryl and heteroaryl halides/triflates and olefins. This environmentally benign procedure is less hazardous, milder, uses a catalytic amount of ligand and Pd(OAc)2 , avoids an inert atmosphere, and catalyst recovery and reusability are achieved.

16.
J Org Chem ; 78(2): 744-51, 2013 Jan 18.
Article in English | MEDLINE | ID: mdl-23245355

ABSTRACT

A highly efficient one-pot synthesis of enantiomerically enriched 2-aryl-2,3-dihydroquinolin-4(1H)-ones has been carried out for the first time using per-6-ABCD as a supramolecular host, chiral base catalyst, and a reusable promoter to give the corresponding scaffold with high yield (up to 99%) and enantiomeric excess (up to 99%). The catalyst is recovered and reused without loss in its activity.


Subject(s)
4-Quinolones/chemical synthesis , beta-Cyclodextrins/chemistry , 4-Quinolones/chemistry , Catalysis , Molecular Structure , Stereoisomerism
17.
Biosens Bioelectron ; 35(1): 452-455, 2012 May 15.
Article in English | MEDLINE | ID: mdl-22425222

ABSTRACT

A unique, efficient, highly sensitive and selective fluorescent chemosensor for fenitrothion has been reported for the first time using per-6-amino-ß-cyclodextrin:Eu(III) complex. Among the various pesticides, the sensitivity response is found to be in the order, fenitrothion>>>quinalphos>methylparathion>parathion>methylparaoxon>paraoxon>fenchlorphos>profenofos>malathion. A detection limit as low as 1 × 10(-12)M for fenitrothion sensing is realized with a 2.4% relative standard deviation (RSD) of three consecutive runs. The per-6-amino-ß-cyclodextrin:Eu(III):pesticide complexes and their sensing mechanism are evidenced from emission, NMR, FT-IR, binding constant measurement, Job's plot, ICD spectra, ESI-MS, lifetime measurements and molecular modeling studies. The proposed sensing is a consequence of Absorption Energy Transfer Emission (AETE) process as a result of better encapsulation of fenitrothion inside the cavity of per-6-amino-ß-cyclodextrin:Eu(III) complex. The remarkable sensitivity and selectivity of fenitrothion compared to other OPs, is attributed to a more deeper binding and tighter fit of fenitrothion inside the CD cavity, which is evident from binding constant values and molecular modeling studies. This tighter fit ensures the replacement of two coordinating water molecules on Eu(III) ion, which may have contributed to the more selective sensing of fenitrothion.


Subject(s)
Biosensing Techniques/methods , Fenitrothion/analysis , Pesticides/analysis , Binding Sites , Biosensing Techniques/statistics & numerical data , Europium/chemistry , Fenitrothion/chemistry , Fluorescence , Limit of Detection , Organophosphorus Compounds/analysis , Organophosphorus Compounds/chemistry , Pesticides/chemistry , Sensitivity and Specificity , beta-Cyclodextrins/chemistry
18.
J Org Chem ; 76(21): 9090-5, 2011 Nov 04.
Article in English | MEDLINE | ID: mdl-21910486

ABSTRACT

A simple and efficient route for the synthesis of 5-substituted 1H-tetrazoles catalyzed by CoY zeolite is reported. The salient features of this atom-economical, cost-effective, and high-yield cobalt-catalyzed protocol are aerobic conditions, lower reaction time, and milder reaction conditions without additives. Other advantages include experimental ease of manipulation, safer alternative to hazardous, corrosive, and polluting conventional Lewis acid catalysts, recovery, and reusability with consistent catalytic activity. The results are rationalized by proposing a suitable mechanism.


Subject(s)
Cobalt/chemistry , Tetrazoles/chemistry , Tetrazoles/chemical synthesis , Zeolites/chemistry , Catalysis , Molecular Structure
19.
Org Lett ; 12(18): 4070-3, 2010 Sep 17.
Article in English | MEDLINE | ID: mdl-20731369

ABSTRACT

A highly efficient enantioselective Henry reaction has been carried out using per-6-ABCD as a supramolecular chiral host and promoter to give the corresponding adduct with high yield (up to 99%) and enantiomeric excess (up to 99%). Per-6-ABCD also promotes the diastereoselective Henry reaction in a syn-selective manner to give the adduct up to 99% yield with 99:1 syn/anti selectivity. The enantiomeric excess of the syn-adduct is 99%. The catalyst is recovered and reused without loss in its activity.


Subject(s)
beta-Cyclodextrins/chemistry , Aldehydes/chemistry , Catalysis , Molecular Structure , Stereoisomerism
SELECTION OF CITATIONS
SEARCH DETAIL
...