Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 36
Filter
Add more filters










Publication year range
1.
Biopharm Drug Dispos ; 44(6): 420-430, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37815926

ABSTRACT

CYP2C19 is a member of the human microsomal cytochrome P450 (CYP). Significant variation in CYP2C19 levels and activity can be attributed to polymorphisms in this gene. Wildtype CYP2C19 and 13 mutants (CYP2C19.1B, CYP2C19.5A, CYP2C19.5B, CYP2C19.6, CYP2C19.8, CYP2C19.9, CYP2C19.10, CYP2C19.11, CYP2C19.13, CYP2C19.16, CYP2C19.19, CYP2C19.23, CYP2C19.30, and CYP2C19.33) were coexpressed with NADPH-cytochrome P450 reductase in Escherichia coli. Hydroxylase activity toward testosterone and progesterone was also examined. Ten CYP2C19 variants showed Soret peaks (450 nm) typical of P450 in the reduced CO-difference spectra. CYP2C19.11 and CYP2C19.23 showed higher testosterone 11α, 16α-/17- and progesterone 6ß-,21-,16α-/17α-hydroxylase activities than CYP2C19.1B. CYP2C19.6, CYP2C19.16, CYP2C19.19, and CYP2C19.30 showed lower activity than CYP2C19.1B. CYP2C19.9, CYP2C19.10. CYP2C19.13, and CYP2C19.33 showed different hydroxylation activities than CYP2C19.1B. These results indicated that CYP2C19 variants have very different substrate specificities for testosterone and progesterone.


Subject(s)
Aryl Hydrocarbon Hydroxylases , Progesterone , Humans , Progesterone/metabolism , Testosterone/metabolism , Cytochrome P-450 CYP2C19/genetics , Cytochrome P-450 CYP2C19/metabolism , Cytochrome P-450 Enzyme System/metabolism , Aryl Hydrocarbon Hydroxylases/metabolism , Hydroxylation
2.
Histochem Cell Biol ; 159(2): 199-208, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36129568

ABSTRACT

Soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) make up the core machinery that mediates membrane fusion. SNAREs, syntaxin, synaptosome-associated protein (SNAP), and synaptobrevin form a tight SNARE complex that brings the vesicle and plasma membranes together and is essential for membrane fusion. The cDNAs of SNAP-25, VAMP2, and Syntaxin 1A from Bombyx mori were inserted into a plasmid, transformed into Escherichia coli, and purified. We then produced antibodies against the SNAP-25, VAMP2, and Syntaxin 1A of Bombyx mori of rabbits and rats, which were used for immunohistochemistry. Immunohistochemistry results revealed that the expression of VAMP2 was restricted to neurons in the pars intercerebralis (PI), dorsolateral protocerebrum (DL), and central complex (CX) of the brain. SNAP-25 was restricted to neurons in the PI and the CX of the brain. Syntaxin 1A was restricted to neurons in the PI and DL of the brain. VAMP2 co-localized with SNAP-25 in the CX, and with Syntaxin 1A in the PI and DL. VAMP2, SNAP-25, and Syntaxin 1A are present in the CA. Bombyxin-immunohistochemical reactivities (IRs) of brain and CA overlapped with VAMP2-, SNAP-25, and Syntaxin 1A-IRs. VAMP2 and Syntaxin 1A are present in the prothoracicotropic hormone (PTTH)-secretory neurons of the brain.


Subject(s)
Bombyx , SNARE Proteins , Rats , Rabbits , Animals , SNARE Proteins/metabolism , Bombyx/metabolism , Syntaxin 1/chemistry , Syntaxin 1/metabolism , Corpora Allata/metabolism , Vesicle-Associated Membrane Protein 2/metabolism , Brain/metabolism
3.
Plants (Basel) ; 10(6)2021 Jun 21.
Article in English | MEDLINE | ID: mdl-34205501

ABSTRACT

In Arabidopsis thaliana, the Ethylene-dependent Gravitropism-deficient and Yellow-green 1 (EGY1) gene encodes a thylakoid membrane-localized protease involved in chloroplast development in leaf mesophyll cells. Recently, EGY1 was also found to be crucial for the maintenance of grana in mesophyll chloroplasts. To further explore the function of EGY1 in leaf tissues, we examined the phenotype of chloroplasts in the leaf epidermal guard cells and pavement cells of two 40Ar17+ irradiation-derived mutants, Ar50-33-pg1 and egy1-4. Fluorescence microscopy revealed that fully expanded leaves of both egy1 mutants showed severe chlorophyll deficiency in both epidermal cell types. Guard cells in the egy1 mutant exhibited permanent defects in chloroplast formation during leaf expansion. Labeling of plastids with CaMV35S or Protodermal Factor1 (PDF1) promoter-driven stroma-targeted fluorescent proteins revealed that egy1 guard cells contained the normal number of plastids, but with moderately reduced size, compared with wild-type guard cells. Transmission electron microscopy further revealed that the development of thylakoids was impaired in the plastids of egy1 mutant guard mother cells, guard cells, and pavement cells. Collectively, these observations demonstrate that EGY1 is involved in chloroplast formation in the leaf epidermis and is particularly critical for chloroplast differentiation in guard cells.

4.
Plants (Basel) ; 10(5)2021 Apr 22.
Article in English | MEDLINE | ID: mdl-33922223

ABSTRACT

Argon-ion beam is an effective mutagen capable of inducing a variety of mutation types. In this study, an argon ion-induced pale green mutant of Arabidopsis thaliana was isolated and characterized. The mutant, designated Ar50-33-pg1, exhibited moderate defects of growth and greening and exhibited rapid chlorosis in photosynthetic tissues. Fluorescence microscopy confirmed that mesophyll chloroplasts underwent substantial shrinkage during the chlorotic process. Genetic and whole-genome resequencing analyses revealed that Ar50-33-pg1 contained a large 940 kb deletion in chromosome V that encompassed more than 100 annotated genes, including 41 protein-coding genes such as TYRAAt1/TyrA1, EGY1, and MBD12. One of the deleted genes, EGY1, for a thylakoid membrane-localized metalloprotease, was the major contributory gene responsible for the pale mutant phenotype. Both an egy1 mutant and F1 progeny of an Ar50-33-pg1 × egy1 cross-exhibited chlorotic phenotypes similar to those of Ar50-33-pg1. Furthermore, ultrastructural analysis of mesophyll cells revealed that Ar50-33-pg1 and egy1 initially developed wild type-like chloroplasts, but these were rapidly disassembled, resulting in thylakoid disorganization and fragmentation, as well as plastoglobule accumulation, as terminal phenotypes. Together, these data support the utility of heavy-ion mutagenesis for plant genetic analysis and highlight the importance of EGY1 in the structural maintenance of grana in mesophyll chloroplasts.

5.
Microb Cell Fact ; 18(1): 194, 2019 Nov 07.
Article in English | MEDLINE | ID: mdl-31699086

ABSTRACT

BACKGROUND: 5'-Aminolevulinic acid (ALA) is widely used in the pharmaceutical industry, healthcare, and food production, and is a substrate for the biosynthesis of heme, which is required for respiration and photosynthesis. Enhancement of ALA biosynthesis has never been developed in Saccharomyces cerevisiae, which is a well-known model microorganism used for bioproduction of many value-added compounds. RESULTS: We demonstrated that metabolic engineering significantly improved ALA production in S. cerevisiae. First, we found that overexpression of HEM1, which encodes ALA synthetase, increased ALA production. Furthermore, addition of an optimal amount of glycine, a substrate for ALA biosynthesis, or levulinic acid, an inhibitor of ALA dehydrogenase, effectively increased ALA production. Next, we developed an assay for multiple metabolites including ALA and found that aconitase, encoded by ACO1 and ACO2, is the rate-limiting enzyme of ALA biosynthesis when sufficient glycine is supplied. Overexpression of ACO2 further enhanced ALA production in S. cerevisiae overexpressing HEM1. CONCLUSIONS: In this study, ALA production in S. cerevisiae was enhanced by metabolic engineering. This study also shows a strategy to identify the rate-limiting step of a target synthetic pathway by assay for multiple metabolites alongside the target product. This strategy can be applied to improve production of other valuable products in the well-studied and well-industrialized microorganism S. cerevisiae.


Subject(s)
Levulinic Acids/metabolism , Metabolic Engineering/methods , Organisms, Genetically Modified/metabolism , Saccharomyces cerevisiae , Aconitate Hydratase/genetics , Aconitate Hydratase/metabolism , Fermentation , Glycine/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Aminolevulinic Acid
6.
Histochem Cell Biol ; 151(2): 187-198, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30132061

ABSTRACT

Rab proteins are low-molecular weight (20-25 kDa) monomeric GTPases that are central to the control and regulation of vesicle trafficking. RabX6 is an insect-specific Rab protein that has no close homolog in vertebrates. However, little information about insect-specific Rab proteins is available. In this study, RabX6 was expressed in Escherichia coli and subsequently purified. Antibodies against Bombyx mori RabX6 were produced in rabbits and rats for western immunoblotting and immunohistochemistry. Western blotting of testis tissues revealed two bands, at positions corresponding to a molecular weight of approximately 26 kDa. RabX6-like immunohistochemical reactivity (RabX6-ir) was identified at the face of the testis, not in the spermatogonia, and was specifically detected at a pair of tritocerebral cells of the male brain. Furthermore, RNA interference of RabX6 was shown to decrease testicular growth. These findings suggest that RabX6 is involved in the regulation of testicular growth and male-specific neuropeptide secretion in the brain of B. mori.


Subject(s)
Bombyx/metabolism , rab GTP-Binding Proteins/metabolism , Animals , Bombyx/chemistry , Male , Testis/growth & development , Testis/metabolism , rab GTP-Binding Proteins/analysis
7.
Biopharm Drug Dispos ; 39(8): 371-377, 2018 Sep.
Article in English | MEDLINE | ID: mdl-30098040

ABSTRACT

CYP2C9 is a human microsomal cytochrome P450c (CYP). Much variation in CYP2C9 levels and activity can be attributed to polymorphisms of this gene. Wild-type CYP2C9 and ten mutants were co-expressed with NADPH-cytochrome P450 reductase in Escherichia coli. The hydroxylase activities toward steroids were examined. CYP2C9.2, CYP2C9.3, CYP2C9.4, CYP2C9.16, CYP2C9.28, CYP2C9.48 and CYP2C9.52 had higher testosterone 6ß-hydroxylation than CYP2C9.1. CYP2C9.4 showed higher progesterone 6ß-hydroxylation activity than CYP2C9.1. CYP2C9.28 and CYP2C9.48 showed higher progesterone 11α-hydroxylation activity than CYP2C9.1. CYP2C9.48 showed higher progesterone 16α-hydroxylation activity than CYP2C9.1. CYP2C9.2, CYP2C9.3, CYP2C9.16 and CYP2C9.30 had higher estrone 16α-hydroxylation activity than CYP2C9.1. CYP2C9.3 had higher estrone 11α-hydroxylation activity than CYP2C9.1. CYP2C9.39 and CYP2C9.57 showed similar activities to CYP2C9.1. These results indicate that the substrate specificity of CYP2C9.39 and CYP2C9.57 was not changed, but CYP2C9.2, CYP2C9.3, CYP2C9.4, CYP2C9.16, CYP2C9.28, CYP2C9.30, CYP2C9.48 and CYP2C9.52 showed different hydroxylation activities toward steroids compared with CYP2C9.1.


Subject(s)
Cytochrome P-450 CYP2C9/metabolism , Steroids/metabolism , Cytochrome P-450 CYP2C9/genetics , Escherichia coli/genetics , Hydroxylation , Polymorphism, Single Nucleotide , Recombinant Proteins/metabolism , Steroid Hydroxylases/metabolism
8.
Biopharm Drug Dispos ; 38(8): 486-493, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28758225

ABSTRACT

CYP2C9 is a human microsomal cytochrome P450c (CYP). Much of the variation in CYP2C9 levels and activity can be attributed to polymorphisms of this gene. Wild-type CYP2C9 and mutants were coexpressed with NADPH-cytochrome P450 reductase in Escherichia coli. The hydroxylase activities toward 7-ethoxycoumarin, flavanone and steroids were examined. Six CYP2C9 variants showed Soret peaks (450 nm) typical of P450 in reduced CO-difference spectra. CYP2C9.38 had the highest 7-ethoxycoumarin de-ethylase activity. All the CYP2C9 variants showed lower flavanone 6-hydroxylation activities than CYP2C9.1 (the wild-type). CYP2C9.38 showed higher activities in testosterone 6ß-hydroxylation, progesterone 6ß-/16α-hydroxylation, estrone 11α-hydroxylation and estradiol 6α-hydroxylation than CYP2C9.1. CYP2C9.40 showed higher testosterone 17-oxidase activity than CYP2C9.1; CYP2C9.8 showed higher estrone 16α-hydroxylase activity and CYP2C9.12 showed higher estrone 11α-hydroxylase activity. CYP2C9.9 and CYP2C9.10 showed similar activities to CYP2C9.1. These results indicate that the substrate specificity of CYP2C9.9 and CYP2C9.10 was not changed, but CYP2C9.8, CYP2C9.12 and CYP2C9.40 showed different substrate specificity toward steroids compared with CYP2C9.1; and especially CYP2C9.38 displayed diverse substrate specificities towards 7-ethoxycoumarin and steroids.


Subject(s)
Coumarins/metabolism , Cytochrome P-450 CYP2C9/genetics , Cytochrome P-450 CYP2C9/metabolism , Flavanones/metabolism , Steroids/metabolism , 7-Alkoxycoumarin O-Dealkylase/metabolism , Escherichia coli/genetics , Humans , Hydroxylation , Polymorphism, Single Nucleotide
9.
Article in English | MEDLINE | ID: mdl-28707374

ABSTRACT

Rab proteins are small monomeric GTPases/GTP-binding proteins, which form the largest branch of the Ras superfamily. The different Rab GTPases are localized to the cytosolic face of specific intracellular membranes, where they function as regulators of distinct steps in membrane trafficking. RabX4 is an insect-specific Rab protein that has no close homolog in vertebrates. There is little information about insect-specific Rab proteins. RabX4 was expressed in Escherichia coli and subsequently purified. Antibodies against Bombyx mori RabX4 were produced in rabbits for western immunoblotting and immunohistochemistry. Western blotting of neural tissues revealed a single band, at approximately 26 kD. RabX4-like immunohistochemical reactivity was restricted to neurons of the pars intercerebralis and dorsolateral protocerebrum in the brain. Further immunohistochemical analysis revealed that RabX4 colocalized with Rab6 and bombyxin in the corpus allatum, a neuronal organ that secretes neuropeptides synthesized in the brain into the hemolymph. RabX4 expression in the frontal ganglion, part of the insect stomatogastric nervous system that is found in most insect orders, was restricted to two neurons on the outer region and did not colocalize with allatotropin or Rab6. Furthermore, RNA interference of RabX4 decreased bombyxin expression levels in the brain. These findings suggest that RabX4 is involved in the neurosecretion of a secretory organ in Bombyx mori.


Subject(s)
Bombyx/metabolism , Corpora Allata/metabolism , Insect Proteins/metabolism , rab GTP-Binding Proteins/metabolism , Animals , Brain/metabolism , Ganglia, Invertebrate/metabolism , Insect Hormones/metabolism , Neurons/metabolism , Neuropeptides/metabolism , RNA Interference
10.
Histochem Cell Biol ; 146(1): 59-69, 2016 Jul.
Article in English | MEDLINE | ID: mdl-26976000

ABSTRACT

In eukaryotic cells, Rab guanosine triphosphate-ases serve as key regulators of membrane-trafficking events, such as exocytosis and endocytosis. Rab3, Rab6, and Rab27 control the regulatory secretory pathway of neuropeptides and neurotransmitters. The cDNAs of Rab3, Rab6, and Rab27 from B. mori were inserted into a plasmid, transformed into Escherichia coli, and then subsequently purified. We then produced antibodies against Rab3, Rab6, and Rab27 of Bombyx mori in rabbits and rats for use in western immunoblotting and immunohistochemistry. Western immunoblotting of brain tissue revealed a single band at approximately 26 kDa. Immunohistochemistry results revealed that Rab3, Rab6, and Rab27 expression was restricted to neurons in the pars intercerebralis and dorsolateral protocerebrum of the brain. Rab3 and Rab6 co-localized with bombyxin, an insect neuropeptide. However, there was no Rab that co-localized with prothoracicotropic hormone. The corpus allatum secretes neuropeptides synthesized in the brain into the hemolymph. Results showed that Rab3 and Rab6 co-localized with bombyxin in the corpus allatum. These findings suggest that Rab3 and Rab6 are involved in neurosecretion in B. mori. This study is the first to report a possible relationship between Rab and neurosecretion in the insect corpus allatum.


Subject(s)
Bombyx/chemistry , Brain/immunology , Corpora Allata/chemistry , Corpora Allata/immunology , rab GTP-Binding Proteins/analysis , Animals , Antibodies/immunology , Bombyx/immunology , Immunohistochemistry , Rabbits , Rats , rab GTP-Binding Proteins/immunology
11.
Biosci Biotechnol Biochem ; 80(5): 863-9, 2016 May.
Article in English | MEDLINE | ID: mdl-26872499

ABSTRACT

Rice straw is a promising resource for bioethanol production. Because the glucose content of pretreatment liquid hydrolysates is highly correlated with ethanol yield, the selection of appropriate rice cultivars is essential. The glucose content in liquid hydrolysates of pretreated rice straws of 208 diverse cultivars was evaluated in natural field in 2013 and 2014 using a novel high-throughput system. The glucose content of the rice straw samples varied across cultivars and was affected by environmental factors such as temperature and solar radiation. Several high-quality cultivars exhibiting high glucose content in both years were identified. The results of this study can aid in development of novel rice cultivars suitable as both feedstocks for bioethanol production and cooking.


Subject(s)
Ethanol/chemistry , Glucose/chemistry , Oryza/chemistry , Plant Stems/chemistry , Ethanol/metabolism , Fermentation , Glucose/metabolism , Hydrolysis , Oryza/metabolism , Plant Stems/metabolism , Solar Energy , Sulfuric Acids/chemistry , Temperature
12.
Environ Toxicol Pharmacol ; 40(2): 360-8, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26233561

ABSTRACT

We evaluated the metabolism of several herbicides and progesterone by two P450 proteins (CYP1A9 and CYP1C1) from Japanese eel (Anguilla japonica). Expression vectors harboring CYP1A9 and CYP1C1 sequences were introduced into Escherichia coli. E. coli membrane fractions were incubated with each substrate, and the metabolites were analyzed. CYP1A9 and CYP1C1 deethylated 7-ethoxycoumarin and phenacetin, and demethylated chlorotoluron, diuron, and linuron. CYP1C1 specifically hydroxlyated progesterone at the 6ß and 16α positions. Five amino acids of CYP1A9 related to substrate binding were selected for mutation analyses [CYP1A9(F128A), CYP1A9(F229A), CYP1A9(F263A), CYP1A9(V387A), and CYP1A9(I391A)]. Two variants, CYP1A9(F229A) and CYP1A9(F128A), changed the ratio of 16α hydroxyprogesterone to 6ß hydroxyprogesterone. Among all the variants, CYP1A9(F263A) showed the highest activity towards substrates used. CYP1A9(V387A) and CYP1A9(I391A) showed higher activities than that of CYP1A9 toward progesterone. The substrate specificity of CYP1A9 may be altered by replacing an amino acid related to substrate binding.


Subject(s)
Anguilla/genetics , Cytochrome P-450 Enzyme System/genetics , Cytochrome P-450 Enzyme System/metabolism , Fish Proteins/genetics , Fish Proteins/metabolism , Animals , Binding Sites , Coumarins/metabolism , Cytochrome P-450 Enzyme System/chemistry , Escherichia coli/genetics , Escherichia coli/metabolism , Fish Proteins/chemistry , Mutation , Phenacetin/metabolism , Progesterone/metabolism , Substrate Specificity
13.
Biopharm Drug Dispos ; 36(8): 552-63, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26222491

ABSTRACT

CYP2A6 is a major hepatic member of the cytochrome P450 family in humans. Much variation in CYP2A6 levels and activity can be attributed to genetic polymorphisms of this gene. CYP2A6*25 comprises an amino acid substitution, F118L. To clarify the effect of the leucine substitution at position 118 in CYP2A6.25, this variant, wild type CYP2A6 and three additional variants consisting of artificial mutations at the substrate binding site (position 481) suggested by earlier reports using random mutagenesis studies [CYP2A6.1, CYP2A6.25, CYP2A6.1(F118A), CYP2A6.1(A481G) and CYP2A6.25(A481G)], were co-expressed with NADPH-cytochrome P450 reductase in E. coli. The hydroxylase activity of these variants toward 7-ethoxycoumarin, coumarin, flavone, α-naphthoflavone, flavanone and hydroxyflavanone were examined. All the mutants had lower activities for coumarin 7-hydroxylation than the wild type. All the mutants showed higher activities for flavone and α-naphthoflavone compared with CYP2A6.1. CYP2A6.1 had the highest flavanone 2'-hydroxylase activity, whereas CYP2A6.25 had the highest 6- and 4'-hydroxylase activities. CYP2A6.1(F118A), CYP2A6.1(A481G) and CYP2A6.25(A481G) had higher flavanone 3'-hydroxylase activities than CYP2A6.1 and CYP2A6.25. Furthermore, 4'-hydroxyflavanone was metabolized by CYP2A6.25. These results indicate that the CYP2A6.25 mutation confers new substrate specificity towards flavonoids.


Subject(s)
Cytochrome P-450 CYP2A6/genetics , Cytochrome P-450 CYP2A6/metabolism , Flavonoids/metabolism , Point Mutation , Polymorphism, Single Nucleotide , Amino Acid Substitution , Binding Sites , Chromatography, High Pressure Liquid , Escherichia coli/genetics , Hydroxylation , Substrate Specificity , Transfection
14.
Histochem Cell Biol ; 141(3): 311-20, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24190830

ABSTRACT

Rab guanosine triphosphatases in eukaryotic cells are key regulators of membrane-trafficking events, such as exocytosis and endocytosis. Rab7 regulates traffic from early to late endosomes and from late endosomes to vacuoles/lysosomes. The Rab7-interacting lysosomal protein (RILP) was extracted from the silkworm, Bombyx mori (B. mori), and expressed in Escherichia coli (E. coli), followed by its purification. The glutathione sulfotransferase pull-down assay revealed that Rab7 of B. mori interacted with RILP of B. mori. We then produced antibodies against RILP of B. mori in rabbits for their use in Western immunoblotting and immunohistochemistry. Western immunoblotting of brain tissue for RILP revealed a single band, at approximately 50 kD. RILP-like immunohistochemical reactivity (RILP-ir) was restricted to neurons of the pars intercerebralis and dorsolateral protocerebrum. Furthermore, RILP-ir was colocalized with the eclosion hormone-ir and bombyxin-ir. However, RILP-ir was not colocalized with prothoracicotropic hormone-ir. These results were similar to those of Rab7 from our previous study. These findings suggest that RILP and Rab7 are involved in the neurosecretion in a restricted subtype of neurons in B. mori. Thus, our study is the first to report of a possible relationship between an insect Rab effector and neurosecretion.


Subject(s)
Adaptor Proteins, Signal Transducing/genetics , Bombyx/embryology , Proteins/genetics , Proteins/metabolism , rab GTP-Binding Proteins/genetics , Adaptor Proteins, Signal Transducing/biosynthesis , Adaptor Proteins, Signal Transducing/immunology , Animals , Bombyx/genetics , Cerebrum/metabolism , Escherichia coli/genetics , Female , Insect Hormones , Larva , Male , Ovary/metabolism , Testis/metabolism , rab GTP-Binding Proteins/biosynthesis , rab7 GTP-Binding Proteins
15.
Plant Physiol Biochem ; 74: 92-8, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24286716

ABSTRACT

The cyclic nucleotides cGMP and cAMP have been reported to play key roles in the regulation of plant processes and responses. We have previously reported that several genes encoding flavonoid biosynthetic enzymes, including chalcone synthase (CHS) in soybean (Glycine max L.), were induced by cGMP but not cAMP. The soybean genome contains nine CHS gene copies (GmCHS1-9). We investigated the responsiveness of several GmCHS genes to cGMP, cAMP, NO, and white light. Quantitative RT-PCR analysis showed that the transcript levels of GmCHS7 and GmCHS8 were increased by 3.6- and 3.8-fold, respectively, with cGMP whereas the transcript levels of GmCHS2 remained constant. Although cAMP had no effect on the transcript levels of the three genes, NO had an activation effect on all three. White light activated the three genes in a transient manner, with GmCHS2, GmCHS7, and GmCHS8 transcript levels increasing 3-fold after 3 h and decreasing to basal levels after 9 h. The GmCHS8 promoter contains several important cis-elements, including the G-box and H-box forming the Unit-I-like sequence and the MYB binding sequence, a target of the GmMYB176 transcription factor regulating the expression of GmCHS8. A transient gene expression assay revealed the activation of the Unit-I-like sequence, but not of the MYB binding sequence, by cGMP. The combination of G-box and H-box was necessary for cGMP responsiveness. Taken together, these results suggest that the Unit-I-like sequence in the promoters of GmCHS7 and GmCHS8 is a cGMP responsive cis-element in these genes and that NO exerts its effect via cis-elements other than the Unit-I-like sequence.


Subject(s)
Acyltransferases/genetics , Cyclic GMP/metabolism , Glycine max/genetics , Promoter Regions, Genetic , Base Sequence , Gene Expression Regulation, Enzymologic , Gene Expression Regulation, Plant , Genes, Plant , Nitric Oxide/metabolism , RNA, Messenger/genetics , Reverse Transcriptase Polymerase Chain Reaction , Glycine max/enzymology
16.
Histochem Cell Biol ; 139(2): 299-308, 2013 Feb.
Article in English | MEDLINE | ID: mdl-22922733

ABSTRACT

Rab proteins are small GTPases that play essential roles in vesicle transport. In this study, we examined the expression of Rab proteins and neuropeptide hormones in the brain of the silkworm, Bombyx mori. We produced antibodies against B. mori Rab1 and Rab14 in rabbits. Immunoblotting of samples of brain tissue from B. mori revealed a single band for each antibody. Rab1 and Rab14 immunohistochemical labeling in the brain of B. mori was restricted to neurons of the pars intercerebralis and dorsolateral protocerebrum. Rab1, Rab7 and Rab14 co-localized with bombyxin. Rab1 and Rab7 co-localized with eclosion hormone. Rab1 co-localized with prothoracicotropic hormone. These results suggest that Rab1, Rab7 and Rab14 may be involved in neuropeptide transport in the brain of B. mori. This is the first report on the specificity of Rab proteins for the secretion of different neuropeptides in insects.


Subject(s)
Bombyx/metabolism , Brain/metabolism , Insect Hormones/biosynthesis , rab GTP-Binding Proteins/biosynthesis , Animals , Bombyx/enzymology , Brain/enzymology , Immunohistochemistry , Insect Hormones/analysis , rab GTP-Binding Proteins/analysis , rab GTP-Binding Proteins/isolation & purification
17.
Biopharm Drug Dispos ; 34(2): 87-97, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23112005

ABSTRACT

CYP 2A6 is a human enzyme that metabolizes many xenobiotics including coumarin, indole, nicotine and carcinogenic nitrosamines. The gene for CYP2A6 is polymorphic. There are few data available to clarify the relationship between P450 genetic variants and the metabolism of materials in food. The CYP 2A6 wild-type protein and 13 mutants (CYP2A6.1, CYP2A6.2, CYP2A6.5, CYP2A6.6, CYP2A6.7, CYP2A6.8, CYP2A6.11, CYP2A6.15, CYP2A6.16, CYP2A6.17, CYP2A6.18, CYP2A6.21, CYP2A6.23 and CYP2A6.25) were co-expressed with NADPH-cytochrome P450 reductase in E. coli. The hydroxylase activities toward 7-ethoxycoumarin, coumarin, safrole, flavanone and hydroxyflavanone were examined. Ten types of CYP2A6 variants except for CYP2A6.2, CYP2A6.5 and CYP2A6.6 showed Soret peaks (450 nm) typical of P450 in the reduced CO-difference spectra and had 7-ethoxycoumarin O-deethylase activities. CYP2A6.15 and CYP2A6.18 showed higher activities for safrole 1'-hydroxylation than CYP2A6.1. CYP2A6.25 and CYP2A6.7 had lower safrole 1'-hydroxylase activities. CYP2A6.7 had lower flavanone 6- and 2'-hydroxylase activities, whereas CYP2A6.25 had higher 6-hydroxylase activity and lower 2'-hydroxylase activity. Hydroxyflavanone was metabolized by CYP2A6.25, but was not metabolized by wild-type CYP2A6.1. These results indicate that CYP2A6.25 possessed new substrate specificity toward flavonoids.


Subject(s)
Aryl Hydrocarbon Hydroxylases/metabolism , Coumarins/metabolism , Flavanones/metabolism , Safrole/metabolism , Aryl Hydrocarbon Hydroxylases/genetics , Cytochrome P-450 CYP2A6 , Escherichia coli/genetics , Genetic Variation , Humans , Hydroxylation , NADPH-Ferrihemoprotein Reductase/genetics , NADPH-Ferrihemoprotein Reductase/metabolism , Recombinant Proteins/genetics , Recombinant Proteins/metabolism
18.
J Integr Plant Biol ; 53(12): 942-50, 2011 Dec.
Article in English | MEDLINE | ID: mdl-22044778

ABSTRACT

In the tetrapyrrole biosynthetic pathway of higher plants, 5-aminolevulinic acid (ALA) is metabolized by ALA dehydratase (ALAD). Here, we isolated ALAD1 cDNA from common wheat (Triticum aestivum L.) and its diploid progenitors, and produced transgenic tobacco plants expressing the wheat ALAD1 gene. The ALAD1 genes were highly conserved among wheat relatives, and three homoeologous loci of wheat ALAD1 (TaALAD1) were equally transcribed in common wheat. A transient expression assay of a TaALAD1-GFP (green fluorescent protein) fusion protein suggested that TaALAD1 is localized in chloroplasts. Overexpression of TaALAD1 in transgenic tobacco resulted in a significant increase in ALAD activity in leaves. Moreover, the transgenic tobacco showed vigorous growth and increased survival rate on medium containing ALA at herbicidal concentrations. These results indicate that wheat ALAD1 has catalytic activity in metabolizing ALA in plastids, and that ectopic expression of TaALAD1 in transgenic plants increases their tolerance to ALA application at high concentrations.


Subject(s)
Chloroplasts/enzymology , DNA, Complementary/genetics , Plant Proteins/genetics , Porphobilinogen Synthase/genetics , Sequence Homology, Nucleic Acid , Triticum/enzymology , Triticum/genetics , Aminolevulinic Acid/pharmacology , Base Sequence , China , Chloroplasts/drug effects , Chloroplasts/genetics , Cloning, Molecular , Culture Media/pharmacology , Gene Expression Regulation, Enzymologic/drug effects , Gene Expression Regulation, Plant/drug effects , Intracellular Space/drug effects , Intracellular Space/enzymology , Molecular Sequence Data , Phylogeny , Plant Proteins/metabolism , Plants, Genetically Modified , Porphobilinogen Synthase/metabolism , Protein Transport/drug effects , Nicotiana/drug effects , Nicotiana/genetics , Nicotiana/growth & development , Triticum/drug effects , Triticum/growth & development
19.
Histochem Cell Biol ; 134(6): 615-22, 2010 Dec.
Article in English | MEDLINE | ID: mdl-21069376

ABSTRACT

Small GTPases of the Rab family are key regulators of membrane trafficking. We produced antibodies against the Rab7 protein of Bombyx mori (BRab7) in rabbits, and against the Rab11 protein of B. mori (BRab11) in mice. The antibodies recognized BRab7 and BRab11 proteins, but did not recognize other Rab proteins. Immunoblotting of samples from brain tissue of B. mori revealed a single band for each antibody. Rab11 was expressed in most tissues, whereas Rab7 was expressed in the brain, ovary, and testis. Immunohistochemical reactivity of Rab7 and Rab11 in the brain of B. mori was restricted to neurons of the pars intercerebralis and dorsolateral protocerebrum. Double-labeling experiments demonstrated that immunohistochemical reactivity of Rab7 co-localized with that of Rab11 and partially with that of Rab8. Immunohistochemical reactivity of Rab11 and Rab8 co-localized with that of PERIOD, one of the proteins associated with circadian rhythm. These findings suggest that Rab7, Rab8, and Rab11 are involved in protein transport in the neurons of the brain of B. mori and might play a role in the control of circadian rhythm.


Subject(s)
Brain/enzymology , rab GTP-Binding Proteins/metabolism , Animals , Bombyx , Circadian Rhythm/physiology , Immunohistochemistry , Mice , Period Circadian Proteins/metabolism , Rabbits , rab GTP-Binding Proteins/immunology , rab7 GTP-Binding Proteins
20.
J Biol Chem ; 285(39): 29797-807, 2010 Sep 24.
Article in English | MEDLINE | ID: mdl-20639575

ABSTRACT

Cucumisin is a subtilisin-like serine protease (subtilase) that is found in the juice of melon fruits (Cucumis melo L.). It is synthesized as a preproprotein consisting of a signal peptide, NH(2)-terminal propeptide, and 67-kDa protease domain. We investigated the role of this propeptide (88 residues) in the cucumisin precursor. Complementary DNAs encoding the propeptides of cucumisin, two other plant subtilases (Arabidopsis ARA12 and rice RSP1), and bacterial subtilisin E were expressed in Escherichia coli independently of their mature enzymes. The cucumisin propeptide strongly inhibited cucumisin in a competitive manner with a K(i) value of 6.2 ± 0.55 nm. Interestingly, cucumisin was also strongly inhibited by ARA12 and RSP1 propeptides but not by the subtilisin E propeptide. In contrast, the propeptides of cucumisin, ARA12, and RSP1 did not inhibit subtilisin. Deletion analysis clearly showed that two hydrophobic regions, Asn(32)-Met(38) and Gly(97)-Leu(103), in the cucumisin propeptide were important for its inhibitory activity. Site-directed mutagenesis also confirmed the role of a Val(36)-centerd hydrophobic cluster within the Asn(32)-Met(38) region in cucumisin inhibition. Circular dichroism spectroscopy revealed that the cucumisin propeptide had a secondary structure without a cognate protease domain and that the thermal unfolding of the propeptide at 90 °C was only partial and reversible. A tripeptide, Ile(35)-Val(36)-Tyr(37), in the Asn(32)-Met(38) region was thought to contribute toward the formation of a proper secondary structure necessary for cucumisin inhibition. This is the first report on the function and structural information of the propeptide of a plant serine protease.


Subject(s)
Cucurbitaceae/enzymology , Enzyme Precursors/metabolism , Protein Folding , Serine Endopeptidases/metabolism , Arabidopsis/enzymology , Arabidopsis/genetics , Arabidopsis Proteins/chemistry , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Cucurbitaceae/genetics , Enzyme Activation/physiology , Enzyme Precursors/chemistry , Enzyme Precursors/genetics , Mutagenesis, Site-Directed , Oryza/enzymology , Oryza/genetics , Protein Structure, Secondary , Protein Structure, Tertiary , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Serine Endopeptidases/chemistry , Serine Endopeptidases/genetics , Subtilisins/chemistry , Subtilisins/genetics , Subtilisins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...