Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Biochem J ; 371(Pt 2): 541-8, 2003 Apr 15.
Article in English | MEDLINE | ID: mdl-12519073

ABSTRACT

A proteinase that hydrolyses clupeine and salmine at acidic pH, called aorsin, was found in the fungus Aspergillus oryzae. Purified aorsin also hydrolysed benzyloxycarbonyl-Arg-Arg-4-methylcoumaryl-7-amide optimally at pH 4.0. The specificity of aorsin appeared to require a basic residue at the P(1) position and to prefer paired basic residues. Aorsin activated plasminogen and converted trypsinogen to trypsin. The trypsin-like activity was inhibited strongly by antipain or leupeptin, but was not inhibited by any other standard inhibitors of peptidases. To identify the catalytic residues of aorsin, a gene was cloned and an expression system was established. The predicted mature protein of aorsin was 35% identical with the classical late-infantile neuronal ceroid lipofuscinosis protein CLN2p and was 24% identical with Pseudomonas serine-carboxyl proteinase, both of which are pepstatin-insensitive carboxyl proteinases. Several putative catalytic residues were mutated. The k (cat)/ K(m) values of the mutant enzymes Glu(86)-->Gln, Asp(211)-->Asn and Ser(354)-->Thr were 3-4 orders of magnitude lower and Asp(90)-->Asn was 21-fold lower than that of wild-type aorsin, indicating that the positions are important for catalysis. Aorsin is another of the S53 family serine-carboxyl proteinases that are not inhibited by pepstatin.


Subject(s)
Aspergillus oryzae/enzymology , Serine Endopeptidases/metabolism , Trypsin/metabolism , Amino Acid Sequence , Base Sequence , DNA Primers , Hydrogen-Ion Concentration , Kinetics , Molecular Sequence Data , Mutagenesis, Site-Directed , Recombinant Proteins/chemistry , Recombinant Proteins/metabolism , Sequence Alignment , Sequence Homology, Amino Acid , Substrate Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...