Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS Negl Trop Dis ; 9(12): e0004255, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26709822

ABSTRACT

BACKGROUND: Dengue, a mosquito-borne viral disease, poses a significant global public health risk. In tropical countries such as India where periodic dengue outbreaks can be correlated to the high prevalence of the mosquito vector, circulation of all four dengue viruses (DENVs) and the high population density, a drug for dengue is being increasingly recognized as an unmet public health need. METHODOLOGY/PRINCIPAL FINDINGS: Using the knowledge of traditional Indian medicine, Ayurveda, we developed a systematic bioassay-guided screening approach to explore the indigenous herbal bio-resource to identify plants with pan-DENV inhibitory activity. Our results show that the alcoholic extract of Cissampelos pariera Linn (Cipa extract) was a potent inhibitor of all four DENVs in cell-based assays, assessed in terms of viral NS1 antigen secretion using ELISA, as well as viral replication, based on plaque assays. Virus yield reduction assays showed that Cipa extract could decrease viral titers by an order of magnitude. The extract conferred statistically significant protection against DENV infection using the AG129 mouse model. A preliminary evaluation of the clinical relevance of Cipa extract showed that it had no adverse effects on platelet counts and RBC viability. In addition to inherent antipyretic activity in Wistar rats, it possessed the ability to down-regulate the production of TNF-α, a cytokine implicated in severe dengue disease. Importantly, it showed no evidence of toxicity in Wistar rats, when administered at doses as high as 2g/Kg body weight for up to 1 week. CONCLUSIONS/SIGNIFICANCE: Our findings above, taken in the context of the human safety of Cipa, based on its use in Indian traditional medicine, warrant further work to explore Cipa as a source for the development of an inexpensive herbal formulation for dengue therapy. This may be of practical relevance to a dengue-endemic resource-poor country such as India.


Subject(s)
Antiviral Agents/pharmacology , Cissampelos/chemistry , Dengue Virus/drug effects , Dengue/drug therapy , Plant Extracts/pharmacology , Animals , Antigens, Viral/immunology , Antigens, Viral/metabolism , Antiviral Agents/therapeutic use , Biological Assay , Cell Line , Dengue/virology , Dengue Virus/classification , Dengue Virus/immunology , Dengue Virus/physiology , Female , Gene Expression Regulation, Viral/drug effects , Humans , India , Male , Mice , Plant Extracts/chemistry , Plant Extracts/isolation & purification , Plant Extracts/therapeutic use , Rats , Rats, Wistar , Serogroup , Viral Load/drug effects , Virus Replication/drug effects
2.
Indian J Pharmacol ; 44(3): 326-32, 2012 May.
Article in English | MEDLINE | ID: mdl-22701240

ABSTRACT

AIM: The mechanism of action of Annona squamosa hexane extract in mediating antihyperglycemic and antitriglyceridimic effect were investigated in this study. MATERIALS AND METHODS: The effects of extract on glucose uptake, insulin receptor-ß (IR-ß), insulin receptor substrate-1 (IRS-1) phosphorylation and glucose transporter type 4 (GLUT4) and phosphoinositide 3-kinase (PI3 kinase) mRNA expression were studied in L6 myotubes. The in vitro mechanism of action was tested in protein-tyrosine phosphatase 1B (PTP1B), G-protein-coupled receptor 40 (GPR40), silent mating type information regulation 2 homolog 1 (SIRT1) and dipeptidyl peptidase-IV (DPP-IV) assays. The in vivo efficacy was characterized in ob/ob mice after an oral administration of the extract for 21 days. RESULTS: The effect of extract promoted glucose uptake, IR-ß and IRS-1 phosphorylation and GLUT4 and PI3 kinase mRNA upregulation in L6 myotubes. The extract inhibited PTP1B with an IC(50) 17.4 µg/ml and did not modulate GPR40, SIRT1 or DPP-IV activities. An oral administration of extract in ob/ob mice for 21 days improved random blood glucose, triglyceride and oral glucose tolerance. Further, the extract did not result in body weight gain before and after treatment (29.3 vs. 33.6 g) compared to rosiglitazone where significant body weight gain was observed (28.4 vs. 44.5 g; *P<0.05 after treatment compared to before treatment). CONCLUSION: The results suggest that Annona squamosa hexane extract exerts its action by modulating insulin signaling through inhibition of PTP1B.

3.
Bioorg Med Chem ; 18(11): 3940-5, 2010 Jun 01.
Article in English | MEDLINE | ID: mdl-20452777

ABSTRACT

Bioassay guided fractionation of the hydro-alcoholic extract of the fruits of Capparis moonii, led to the isolation of two new chebulinic acid derivatives. The compounds 1 and 2 displayed significant glucose uptake effect of 223% and 219% over the control at the 10ng/ml and 100ng/ml concentration, respectively. The increased glucose uptake effects of the compounds were associated with significant IR and IRS-1 phosphorylation, GLUT4 and PI3-kinase mRNA expression in the L6 cells.


Subject(s)
Capparis/chemistry , Glucose/metabolism , Hydrolyzable Tannins/isolation & purification , Hydrolyzable Tannins/pharmacology , Animals , Cell Line , Glucose Transporter Type 4/genetics , Insulin Receptor Substrate Proteins/metabolism , Molecular Mimicry , Phosphatidylinositol 3-Kinases/genetics , Phosphorylation/drug effects , Phytotherapy , RNA, Messenger/analysis , RNA, Messenger/drug effects , Rats , Receptor, Insulin/metabolism
4.
J Diabetes ; 1(2): 99-106, 2009 Jun.
Article in English | MEDLINE | ID: mdl-20929506

ABSTRACT

BACKGROUND: Cinnamomum cassia (Family: Lauraceae) is an Ayurvedic medicinal plant used traditionally for the treatment of a number of diseases, including diabetes. The hypoglycemic effect of this plant has been established in vivo. However, the effects of cinnamic acid, isolated from C. cassia, on the insulin signaling cascade in an in vitro model have not been elucidated. Hence, the aim of the present study was to evaluate the anti-diabetic effect of cinnamic acid on glucose transport by L6 myotubes. METHODS: The mechanism of action of cinnamic acid was determined using specific targets in the insulin signaling pathway, including protein tyrosine phosphatase (PTP) 1B, phosphatidylinositol 3-kinase (PI3-K) and the glucose transporter GLUT4. After differentiation of myoblast to myotubes, the cells were serum deprived for 5 h and then treated with 1 ng/mL cinnamic acid and 50 µmol/L rosiglitazone for 18 h and 100 nmol/L insulin for 20 min for gene expression studies. RESULTS: Expression of GLUT4 mRNA was increased following treatment of L6 myotubes with 1 ng/mL cinnamic acid. Furthermore, cinnamic acid inhibited PTP1B activity (by 96.5%), but had no significant effect on PI3-K activity. CONCLUSION: On the basis of the results of the present study, we postulate that cinnamic acid isolated from the hydro-alcoholic extract of Cinnamomum cassia activates glucose transport by a PI3-K-independent pathway. However, the detailed mechanism of action requires further analysis.


Subject(s)
Cinnamates/pharmacology , Cinnamomum aromaticum/chemistry , Glucose Transporter Type 4/metabolism , Glucose/metabolism , Hypoglycemic Agents/pharmacology , Muscle Fibers, Skeletal/drug effects , Phosphatidylinositol 3-Kinase/metabolism , Animals , Biological Transport , Cell Line , Glucose Transporter Type 4/genetics , Muscle Fibers, Skeletal/metabolism , Phosphatidylinositol 3-Kinase/genetics , Plant Bark/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...