Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 13(1): 4225, 2023 03 14.
Article in English | MEDLINE | ID: mdl-36918661

ABSTRACT

We previously generated fully human antibody-producing TC-mAb mice for obtaining potential therapeutic monoclonal antibodies (mAbs). In this study, we investigated 377 clones of fully human mAbs against a tumor antigen, epithelial cell adhesion molecule (EpCAM), to determine their antigen binding properties. We revealed that a wide variety of mAbs against EpCAM can be obtained from TC-mAb mice by the combination of epitope mapping analysis of mAbs to EpCAM and native conformational recognition analysis. Analysis of 72 mAbs reacting with the native form of EpCAM indicated that the EpCL region (amino acids 24-80) is more antigenic than the EpRE region (81-265), consistent with numerous previous studies. To evaluate the potential of mAbs against antibody-drug conjugates, mAbs were directly labeled with DM1, a maytansine derivative, using an affinity peptide-based chemical conjugation (CCAP) method. The cytotoxicity of the conjugates against a human colon cancer cell line could be clearly detected with high-affinity as well as low-affinity mAbs by the CCAP method, suggesting the advantage of this method. Thus, this study demonstrated that TC-mAb mice can provide a wide variety of antibodies and revealed an effective way of identifying candidates for fully human ADC therapeutics.


Subject(s)
Colonic Neoplasms , Immunoconjugates , Humans , Mice , Animals , Immunoconjugates/pharmacology , Immunoconjugates/therapeutic use , Epithelial Cell Adhesion Molecule , Antigens, Neoplasm , Colonic Neoplasms/pathology , Antibodies, Monoclonal
2.
Sci Transl Med ; 12(529)2020 02 05.
Article in English | MEDLINE | ID: mdl-32024801

ABSTRACT

Pain is more prevalent in women for reasons that remain unclear. We have identified a mechanism of injury-free nociceptor sensitization and opioid-induced hyperalgesia (OIH) promoted by prolactin (PRL) in females. PRL signals through mutually inhibitory long (PRLR-L) and short (PRLR-S) receptor isoforms, and PRLR-S activation induces neuronal excitability. PRL and PRLR expression were higher in females. CRISPR-mediated editing of PRLR-L promoted nociceptor sensitization and allodynia in naïve, uninjured female mice that depended on circulating PRL. Opioids, but not trauma-induced nerve injury, decreased PRLR-L promoting OIH through activation of PRLR-S in female mice. Deletion of both PRLR-L and PRLR-S (total PRLR) prevented, whereas PRLR-L overexpression rescued established OIH selectively in females. Inhibition of circulating PRL with cabergoline, a dopamine D2 agonist, up-regulated PRLR-L and prevented OIH only in females. The PRLR-L isoform therefore confers protection against PRL-promoted pain in females. Limiting PRL/PRLR-S signaling pharmacologically or with gene therapies targeting the PRLR may be effective for reducing pain in a female-selective manner.


Subject(s)
Analgesics, Opioid , Receptors, Prolactin , Animals , Female , Hyperalgesia/chemically induced , Mice , Nociceptors , Prolactin , Protein Isoforms
3.
Mol Neurobiol ; 56(7): 5241-5255, 2019 Jul.
Article in English | MEDLINE | ID: mdl-30565051

ABSTRACT

The collapsin response mediator protein 2 (CRMP2) has emerged as a central node in assembling nociceptive signaling complexes involving voltage-gated ion channels. Concerted actions of post-translational modifications, phosphorylation and SUMOylation, of CRMP2 contribute to regulation of pathological pain states. In the present study, we demonstrate a novel role for CRMP2 in spinal nociceptive transmission. We found that, of six possible post-translational modifications, three phosphorylation sites on CRMP2 were critical for regulating calcium influx in dorsal root ganglion sensory neurons. Of these, only CRMP2 phosphorylated at serine 522 by cyclin-dependent kinase 5 (Cdk5) contributed to spinal neurotransmission in a bidirectional manner. Accordingly, expression of a non-phosphorylatable CRMP2 (S522A) decreased the frequency of spontaneous excitatory postsynaptic currents (sEPSCs), whereas expression of a constitutively phosphorylated CRMP2 (S522D) increased the frequency of sEPSCs. The presynaptic nature of CRMP2's actions was further confirmed by pharmacological antagonism of Cdk5-mediated CRMP2 phosphorylation with S-N-benzy-2-acetamido-3-methoxypropionamide ((S)-lacosamide; (S)-LCM) which (i) decreased sEPSC frequency, (ii) increased paired-pulse ratio, and (iii) reduced the presynaptic distribution of CaV2.2 and NaV1.7, two voltage-gated ion channels implicated in nociceptive signaling. (S)-LCM also inhibited depolarization-evoked release of the pro-nociceptive neurotransmitter calcitonin gene-related peptide (CGRP) in the spinal cord. Increased CRMP2 phosphorylation in rats with spared nerve injury (SNI) was decreased by intrathecal administration of (S)-LCM resulting in a loss of presynaptic localization of CaV2.2 and NaV1.7. Together, these findings indicate that CRMP2 regulates presynaptic excitatory neurotransmission in spinal cord and may play an important role in regulating pathological pain. Novel targeting strategies to inhibit CRMP2 phosphorylation by Cdk5 may have great potential for the treatment of chronic pain.


Subject(s)
Intercellular Signaling Peptides and Proteins/metabolism , Nerve Tissue Proteins/metabolism , Pain/metabolism , Sensory Receptor Cells/metabolism , Spinal Cord/metabolism , Animals , Excitatory Postsynaptic Potentials/physiology , Male , Organ Culture Techniques , Phosphorylation/physiology , Rats , Rats, Sprague-Dawley , Synaptic Transmission/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...