Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Metabolites ; 12(2)2022 Feb 01.
Article in English | MEDLINE | ID: mdl-35208208

ABSTRACT

Metabolomics can help identify candidate biomarker metabolites whose levels are altered in response to disease development or drug administration. However, assessment of the underlying molecular mechanism is challenging considering it depends on the researcher's knowledge. This study reports a novel method for the automated recommendation of keywords known in the literature that may be overlooked by researchers. The proposed method aided in the identification of Medical Subject Headings (MeSH) terms in PubMed using MeSH co-occurrence data. The intended users are biocurators who have identified specific biomarker metabolites from a metabolomics study and would like to identify literature-reported molecular mechanisms that are associated with both the metabolite and their research area of interest. The proposed method finds MeSH terms that co-occur with a MeSH term of the candidate biomarker metabolite as well as a MeSH term of a researcher's known keyword, such as the name of a disease. The connectivity score S was determined using association analysis. Pilot analyses demonstrated that, while the biological significance of the obtained MeSH terms could not be guaranteed, the developed method can be useful for finding keywords to further investigate molecular mechanisms in association with candidate biomarker molecules.

2.
J Biosci Bioeng ; 131(2): 207-212, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33051155

ABSTRACT

Finding peaks in chromatograms and determining their start and end points (peak picking) is a core task in chromatography based biotechnology. Construction of peak-picking neural networks by deep learning was, however, hampered from the preparation of exact peak-picked or "labeled" chromatograms since the exact start and end points were often unclear in overlapping peaks in real chromatograms. We present a design of a fake chromatogram generator, along with a method for deep learning of peak-picking neural networks. Fake chromatograms were generated by generation of fake peaks, random sampling of peak positions from feature distributions, and merging with real blank sample chromatograms. Information on the exact start and end points, as labeled on the fake chromatograms, were effective for training and evaluating peak-picking neural networks. The peak-picking neural networks constructed herein outperformed conventional peak-picking software and showed comparable performance with that of experienced operators for processing the widely targeted metabolome data. Results of this study indicate that generation of fake chromatograms would be crucial for developing peak-picking neural networks and a key technology for further improvement of peak picking neural networks.


Subject(s)
Deep Learning , Metabolomics/methods , Chromatography , Software
SELECTION OF CITATIONS
SEARCH DETAIL
...