Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Am J Med Genet C Semin Med Genet ; 187(3): 396-408, 2021 09.
Article in English | MEDLINE | ID: mdl-34529350

ABSTRACT

Molecular diagnosis is important to provide accurate genetic counseling of skeletal dysplasias (SD). Although next-generation sequencing (NGS) techniques are currently the preferred methods for analyzing these conditions, some of the published results have not shown a detection rate as high as it would be expected. The present study aimed to assess the diagnostic yield of targeted NGS combined with Sanger sequencing (SS) for low-coverage exons of genes of interest and exome sequencing (ES) in a series of patients with rare SD and use two patients as an example of our strategy. This study used two different in-house panels. Of 93 variants found in 88/114 (77%) patients, 57 are novel. The pathogenic variants found in the following genes: B3GALT6, PCYT1A, INPPL1, LIFR, of four patients were only detected by SS. In conclusion, the high diagnostic yield reached in the present study can be attributed to both a good selection of patients and the utilization of the SS for the insufficiently covered regions. Additionally, the two case reports-a patient with acrodysostosis related to PRKAR1A and another with ciliopathy associated with KIAA0753, add new and relevant clinical information to the current knowledge.


Subject(s)
Dysostoses , Osteochondrodysplasias , Choline-Phosphate Cytidylyltransferase , Galactosyltransferases , Genetic Counseling , High-Throughput Nucleotide Sequencing , Humans , Exome Sequencing
2.
Mol Syndromol ; 9(2): 92-99, 2018 Feb.
Article in English | MEDLINE | ID: mdl-29593476

ABSTRACT

Mutations in the fibroblast growth factor receptor 3 gene (FGFR3) cause achondroplasia (ACH), hypochondroplasia (HCH), and thanatophoric dysplasia types I and II (TDI/TDII). In this study, we performed a genetic study of 123 Brazilian patients with these phenotypes. Mutation hotspots of the FGFR3 gene were PCR amplified and sequenced. All cases had recurrent mutations related to ACH, HCH, TDI or TDII, except for 2 patients. One of them had a classical TDI phenotype but a typical ACH mutation (c.1138G>A) in combination with a novel c.1130T>C mutation predicted as being pathogenic. The presence of the second c.1130T>C mutation likely explained the more severe phenotype. Another atypical patient presented with a compound phenotype that resulted from a combination of ACH and X-linked spondyloepiphyseal dysplasia tarda (OMIM 313400). Next-generation sequencing of this patient's DNA showed double heterozygosity for a typical de novo ACH c.1138G>A mutation and a maternally inherited TRAPPC2 c.6del mutation. All mutations were confirmed by Sanger sequencing. A pilot study using high-resolution melting (HRM) technique was also performed to confirm several mutations identified through sequencing. We concluded that for recurrent FGFR3 mutations, HRM can be used as a faster, reliable, and less expensive genotyping test than Sanger sequencing.

SELECTION OF CITATIONS
SEARCH DETAIL
...