Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
J Biosci Bioeng ; 126(3): 355-362, 2018 Sep.
Article in English | MEDLINE | ID: mdl-29699943

ABSTRACT

3-Methyl-4-nitrophenol (3M4NP) is formed in soil as a hydrolysis product of fenitrothion, one of the major organophosphorus pesticides. A Pseudomonas strain was isolated as a 3M4NP degrader from a crop soil and designated TSN1. This strain utilized 3M4NP as a sole carbon and energy source. To elucidate the biodegradation pathway, we performed transposon mutagenesis with pCro2a (mini-Tn5495) and obtained three mutants accumulating a dark pink compound(s) from 3M4NP. Rescue cloning and sequence analysis revealed that in all mutants, the transposon disrupted an identical aromatic compound meta-cleaving dioxygenase gene, and a monooxygenase gene was located just downstream of the dioxygenase gene. These two genes were designated mnpC and mnpB, respectively. The gene products showed high identity with the methylhydroquinone (MHQ) monooxygenase (58%) and the 3-methylcatechol 2,3-dioxygenase (54%) of a different 3M4NP degrader Burkholderia sp. NF100. The transposon mutants converted 3M4NP or MHQ into two identical metabolites, one of which was identified as 2-hydroxy-5-methyl-1,4-benzoquinone (2H5MBQ) by GC/MS analysis. Furthermore, two additional genes (named mnpA1 and mnpA2), almost identical to the p-nitrophenol monooxygenase and the p-benzoquinone reductase genes of Pseudomonas sp. WBC-3, were isolated from the total DNA of strain TSN1. Disruption of mnpA1 resulted in the complete loss of the 3M4NP degradation activity, demonstrating that mnpA1 encodes the initial monooxygenase for 3M4NP degradation. The purified mnpA2 gene product could efficiently reduce methyl p-benzoquinone (MBQ) into MHQ. These results suggest that strain TSN1 degrades 3M4NP via MBQ, MHQ, and 2H5MBQ in combination with mnpA1A2 and mnpCB, existing at different loci on the genome.


Subject(s)
Cresols/metabolism , Metabolic Networks and Pathways/genetics , Pseudomonas/genetics , Pseudomonas/metabolism , Biodegradation, Environmental , Burkholderia/genetics , Burkholderia/metabolism , Catechols/metabolism , Dioxygenases/genetics , Dioxygenases/metabolism , Fenitrothion/metabolism , Gene Expression Regulation, Bacterial , Gene Expression Regulation, Enzymologic , Hydroquinones/metabolism , Mixed Function Oxygenases/genetics , Mixed Function Oxygenases/metabolism , Oxygenases/genetics , Oxygenases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...