Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Adv ; 8(38): eabo6783, 2022 09 23.
Article in English | MEDLINE | ID: mdl-36129989

ABSTRACT

In the initial process of coronavirus disease 2019 (COVID-19), severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infects respiratory epithelial cells and then transfers to other organs the blood vessels. It is believed that SARS-CoV-2 can pass the vascular wall by altering the endothelial barrier using an unknown mechanism. In this study, we investigated the effect of SARS-CoV-2 on the endothelial barrier using an airway-on-a-chip that mimics respiratory organs and found that SARS-CoV-2 produced from infected epithelial cells disrupts the barrier by decreasing Claudin-5 (CLDN5), a tight junction protein, and disrupting vascular endothelial cadherin-mediated adherens junctions. Consistently, the gene and protein expression levels of CLDN5 in the lungs of a patient with COVID-19 were decreased. CLDN5 overexpression or Fluvastatin treatment rescued the SARS-CoV-2-induced respiratory endothelial barrier disruption. We concluded that the down-regulation of CLDN5 expression is a pivotal mechanism for SARS-CoV-2-induced endothelial barrier disruption in respiratory organs and that inducing CLDN5 expression is a therapeutic strategy against COVID-19.


Subject(s)
COVID-19 , Claudin-5/metabolism , SARS-CoV-2 , Claudin-5/genetics , Endothelial Cells/metabolism , Fluvastatin/metabolism , Fluvastatin/pharmacology , Humans , Tight Junction Proteins/metabolism
2.
Tissue Barriers ; 9(3): 1911195, 2021 07 03.
Article in English | MEDLINE | ID: mdl-33955828

ABSTRACT

Roundabout guidance receptor 4 (Robo4) is an endothelial-specific membrane protein that suppresses pathological angiogenesis and vascular hyperpermeability by stabilizing endothelial cells. Robo4 suppresses severe systemic inflammation induced by pathogens and endotoxins and inhibits tumor growth and metastasis, therefore serving as a potential therapeutic target. Although the regulation of Robo4 expression through transcription factors and epigenetic mechanisms has been studied, the role of histone deacetylases (HDACs) has not been explored. In the present study, we investigated the involvement of HDACs in the regulation of Robo4 expression. An HDAC inhibitor, MS-275, which inhibits HDAC1, HDAC2, and HDAC3, was found to suppress Robo4 expression in endothelial cells. Small interfering RNA (siRNA)-mediated knockdown of HDAC3, but not of HDAC1 and 2, also decreased its expression level. MS-275 downregulated the expression of the transcription factor complex GABP, in addition to suppressing Robo4 promoter activity. GABP expression was also downregulated by the siRNA against HDAC3. MS-275 decreased the transendothelial electrical resistance of a monolayer of mouse endothelial cells and increased the rate of leakage of Evans blue dye in the mouse lungs. In addition, MS-275 accelerated cell migration through the endothelial cell monolayer and augmented cell extravasation in the mouse lungs. Taken together, we demonstrated that MS-275 suppresses Robo4 expression by inhibiting HDAC3 in endothelial cells and enhances endothelial and vascular permeability. Thus, we demonstrated a novel mechanism regulating Robo4 expression and vascular permeability, which is anticipated to contribute to future therapies for infectious and inflammatory diseases.


Subject(s)
Capillary Permeability , Endothelial Cells , Animals , Benzamides/pharmacology , Endothelial Cells/metabolism , Histone Deacetylase Inhibitors/pharmacology , Mice , Pyridines , Receptors, Cell Surface/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...