Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Bioorg Chem ; 115: 105183, 2021 10.
Article in English | MEDLINE | ID: mdl-34339978

ABSTRACT

In this work, due to the biological activity evaluation, a series of hydroxy methoxy benzoins (1-8), benzils (10-16) and methoxy benzoin/benzil-O-ß-d-glucosides (17-28) were synthesized. Antioxidant (FRAP, CUPRAC, DPPH), antimicrobial (16 microorganisms, and two yeast), enzyme inhibition (α-amylase, α-glucosidase, AChE, BChE, and tyrosinase) of all synthesized benzoin/benzil analogs were investigated. Benzoins (1-8) showed the most effective antioxidant properties compared to all three methods. Compound 28 against α-amylase, compound 9 against α-glucosidase, compound 11 against AChE, compound 2 against BChE, and compound 13 against tyrosinase showed the best activities with the better or similar IC50 values as used standards. Hydroxy methoxy benzoin compounds (1-8) among all four groups were seen as the most effective against the tested microorganism. Molecular docking analysis showed that all tested compounds 1-28 (0.01-2.22 µM) had the best binding affinity against AChE enzyme. Cytotoxic effects of the many of compounds (1-16, 21, and 24) also investigated and it was found that they caused different effects in different cells. The LDH tests of compounds 1a + b, 4, 7, 8, 9, 11, 12, 21, and 24, seemed to be effective compared to the positive control cisplatin. The cytotoxicity of compounds 6 (9.24%) for MCF7 cancer cells, 8 (5.16%) and 4 (8.26%) for HT29 cancer cells, 24 (9.84%) for Hep3B cells and 8 (8.52%), 7 (5.70%), 4 (6.94) and 9 (7.22%) for C6 cells were at normal values. And also cytotoxic activity of four compounds (5, 9, 21, and 24) among the all synthetic groups, were evaluated to the HeLa and RPE. Compound 5 showed anticancer activity on HeLa and RPE cancer cells as much as or better than cisplatin which was used as standard.


Subject(s)
Anti-Infective Agents/chemistry , Antineoplastic Agents/chemistry , Antioxidants/chemistry , Benzoin/analogs & derivatives , Enzyme Inhibitors/chemistry , Phenylglyoxal/analogs & derivatives , Anti-Infective Agents/chemical synthesis , Anti-Infective Agents/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/pharmacology , Antioxidants/chemical synthesis , Antioxidants/pharmacology , Benzoin/chemical synthesis , Benzoin/pharmacology , Cell Line, Tumor , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/pharmacology , Humans , Molecular Docking Simulation , Phenylglyoxal/chemical synthesis , Phenylglyoxal/chemistry , Phenylglyoxal/pharmacology
2.
Z Naturforsch C J Biosci ; 76(9-10): 375-382, 2021 Sep 27.
Article in English | MEDLINE | ID: mdl-33823106

ABSTRACT

The aim of the present study is to determine the potent biological activities and carry out isolation studies on Barbarea integrifolia. The antioxidant capacity of the species was evaluated by total phenolic content, FRAP, CUPRAC, and DPPH radical scavenging activity. Anticancer activity studies were performed by MTT assay in MDA-MB-231, MCF-7, Hep3B, PC-3, A549, HCT116, L-929 cell lines. It was observed that the remaining aqueous fraction has higher total phenolic content while higher activity in the CUPRAC and FRAP assays was displayed for the methanolic extract and chloroform fraction. The extracts showed anticancer activity as compared with vincristine. It was observed that chloroform fraction has the highest anticancer activity on MCF-7 cell line, while ethyl acetate fraction has the highest anticancer activity on Hep-3B and A549 cell lines. Methanolic extract has the highest anticancer activity on HCT116 and MDA-MB-23 cell lines. The isolation studies have been performed using several chromatographic methods. The chemical structures of compounds have been identified by means of 1H NMR, 13C NMR, 2D-NMR, and MS. Five major compounds, one steroid (ß-Sitosterol), one phenolic acid (Rosmarinic acid), one flavonol heteroside (kaempferol 7-O-α-l-rhamnoside-3-O-ß-d-(2-O-ß- d -glucosyl)-ß-d-glucoside), and two glucosinolates (Gluconasturtiin, Gluconasturtiin choline salt) have been isolated.


Subject(s)
Antioxidants/pharmacology , Barbarea/chemistry , Glucosinolates/pharmacology , Plant Extracts/pharmacology , Antineoplastic Agents, Phytogenic/chemistry , Antineoplastic Agents, Phytogenic/pharmacology , Antioxidants/chemistry , Carbon-13 Magnetic Resonance Spectroscopy/methods , Cell Line, Tumor , Drug Screening Assays, Antitumor , Humans , Plant Extracts/chemistry , Proton Magnetic Resonance Spectroscopy/methods
3.
Turk J Chem ; 45(3): 788-804, 2021.
Article in English | MEDLINE | ID: mdl-37635901

ABSTRACT

In this study, hydroxy benzoin ( 1-7 ), benzil ( 8-14 ), and benzoin/benzil-O-ß-D-glucosides ( 15-25 ) were synthesized to investigate their biological activities. An efficient method for synthesizing hydroxy benzoin compounds ( 1 - 7 ) was prepared from four different benzaldehydes using an ultrasonic bath. Then, antioxidant (FRAP, CUPRAC, and DPPH), antimicrobial (3 Gram (-), 4/6 Gram (+), one tuberculosis and one fungus), and enzyme inhibition (acetylcholinesterase, butyrylcholine esterase, tyrosinase, α-amylase, and α- glucosidase) for the all synthesized compounds ( 1-25 ) were evaluated. And also, four most active compounds ( 4 , 12 , 18a+b , and 25 ) from each group were evaluated to the human cervical cancer cell line (HeLa) and anticancer screening tests against the human retinal normal cell line (RPE). Compound 4 showed HeLa and RPE cancer cell activities as much as cisplatin. The synthesized compounds were characterized by spectroscopic methods (NMR, FT-IR, UV, LC-QTOF-MS) and the ACD NMR program's help.

4.
Nutr Cancer ; 71(7): 1181-1188, 2019.
Article in English | MEDLINE | ID: mdl-30958699

ABSTRACT

Although several studies have investigated the cytotoxic effects of different Dianthus species, there has been only limited research into the cytotoxic effect of Dianthus carmelitarum. The purpose of this research was to evaluate the phenolic characterization and the cytotoxic effect of D. carmelitarum on human colon cancer (WiDr) cells and the possible mechanisms involved. Total polyphenolic contents (TPC) and phenolic characterization of the extract were evaluated using the Folin-Cioceltau method and reversed-phase high performance liquid chromatography (RP-HPLC), respectively. The cytotoxic activity of the extract was determined using the methylthiazolyldiphenyl-tetrazolium bromide (MTT) assay. The mechanism involved in the extract's cytotoxic effect was then evaluated in terms of apoptosis and the cell cycle using flow cytometry, while mitochondrial membrane potential (MMP) was investigated using the fluorometric method. The TPC value of the extract was 784.8 ± 40.3 mg gallic acid equivalent per 100 g sample, and sinapic acid and benzoic acid were detected as major phenolics in the extract. D. carmelitarum extract exhibited a selective cytotoxic effect (3.6-fold) on WiDr cells compared to normal colon cells. The extract induced cell cycle arrest at the S phase and apoptosis via reduced MMP in WiDr cells. Phytomedical and nutraceutical applications of D. carmelitarum may represent promising approaches in the treatment of cancer.


Subject(s)
Antineoplastic Agents, Phytogenic/pharmacology , Apoptosis/drug effects , Colonic Neoplasms/drug therapy , Dianthus/chemistry , Plant Extracts/pharmacology , S Phase Cell Cycle Checkpoints/drug effects , Antineoplastic Agents, Phytogenic/chemistry , Cell Line, Tumor , Cell Proliferation/drug effects , Colonic Neoplasms/pathology , Dimethyl Sulfoxide/chemistry , Humans , Membrane Potential, Mitochondrial/drug effects , Plant Extracts/chemistry , Polyphenols/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...