Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
J Am Chem Soc ; 146(12): 8618-8629, 2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38471106

ABSTRACT

Atomically dispersed first-row transition metals embedded in nitrogen-doped carbon materials (M-N-C) show promising performance in catalytic hydrogenation but are less well-studied for reactions with more complex mechanisms, such as hydrogenolysis. Their ability to catalyze selective C-O bond cleavage of oxygenated hydrocarbons such as aryl alcohols and ethers is enhanced with the participation of ligands directly bound to the metal ion as well as longer-range contributions from the support. In this article, we describe how Fe-N-C catalysts with well-defined local structures for the Fe sites catalyze C-O bond hydrogenolysis. The reaction is facilitated by the N-C support. According to spectroscopic analyses, the as-synthesized catalysts contain mostly pentacoordinated FeIII sites, with four in-plane nitrogen donor ligands and one axial hydroxyl ligand. In the presence of 20 bar of H2 at 170-230 °C, the hydroxyl ligand is lost when N4FeIIIOH is reduced to N4FeII, assisted by the H2 chemisorbed on the support. When an alcohol binds to the tetracoordinated FeII sites, homolytic cleavage of the O-H bond is accompanied by reoxidation to FeIII and H atom transfer to the support. The role of the N-C support in catalytic hydrogenolysis is analogous to the behavior of chemically and redox-non-innocent ligands in molecular catalysts based on first-row transition metal ions and enhances the ability of M-N-Cs to achieve the types of multistep activations of strong bonds needed to upgrade renewable and recycled feedstocks.

2.
ACS Appl Mater Interfaces ; 15(46): 53498-53514, 2023 Nov 22.
Article in English | MEDLINE | ID: mdl-37945527

ABSTRACT

The development of new methods of catalyst synthesis with the potential to generate active site structures orthogonal to those accessible by traditional protocols is of great importance for discovering new materials for addressing challenges in the evolving energy and chemical economy. In this work, the generality of oxidative grafting of organometallic and well-defined molecular metal precursors onto redox-active surfaces such as manganese dioxide (MnO2) and lithium manganese oxide (LiMn2O4) is investigated. Nine molecular metal precursors are explored, spanning groups 4-11 and each of the three periods of the transition metal series. The byproducts of the oxidative grafting reaction, a mixture of protodemetalation and ligand homocoupling for several organometallic precursors, was found to provide insights into the mechanism of the grafting reaction, suggesting oxidation of both the metal d-orbitals, as well as the metal-carbon σ-bonds, resulting in ejection of the ligand radical fragment. Analysis of the supported structures and oxidation state by X-ray absorption spectroscopy (XAS) and X-ray photoelectron spectroscopy (XPS) suggests that several of the chemisorbed metal ions are intercalated into interstitial vacancies of the surface structure while other complexes form intact molecular fragments on the surface. Proof of concept for the use of this metalation protocol to generate diverse, metal-dependent catalytic performance is demonstrated by the application of these materials in the conversion of cyclohexane to K/A oil (cyclohexanol and cyclohexanone) with tert-butyl hydroperoxide, as well as in the low-temperature (T ≤ 50 °C) oxidation of carbon monoxide to carbon dioxide.

3.
Chem Commun (Camb) ; 59(45): 6861-6864, 2023 Jun 01.
Article in English | MEDLINE | ID: mdl-37194955

ABSTRACT

Isolated Pd atoms supported on high surface area MnO2, prepared by the oxidative grafting of (bis(tricyclohexylphosphine-palladium(0)), catalyze (>50 turnovers, 17 h) the low temperature (≤325 K) oxidation of CO (7.7 kPa O2, 2.6 kPa CO) with results of in situ/operando and ex situ spectroscopic characterization signifying a synergistic role of Pd and MnO2 in facilitating redox turnovers.

4.
J Am Chem Soc ; 145(14): 7992-8000, 2023 Apr 12.
Article in English | MEDLINE | ID: mdl-36995316

ABSTRACT

Catalytic C-H borylation is an attractive method for the conversion of the most abundant hydrocarbon, methane (CH4), to a mild nucleophilic building block. However, existing CH4 borylation catalysts often suffer from low turnover numbers and conversions, which is hypothesized to result from inactive metal hydride agglomerates. Herein we report that the heterogenization of a bisphosphine molecular precatalyst, [(dmpe)Ir(cod)CH3], onto amorphous silica dramatically enhances its performance, yielding a catalyst that is 12-times more efficient than the current standard for CH4 borylation. The catalyst affords over 2000 turnovers at 150 °C in 16 h with a selectivity of 91.5% for mono- vs diborylation. Higher catalyst loadings improve yield and selectivity for the monoborylated product (H3CBpin) with 82.8% yield and >99% selectivity being achieved with 1255 turnovers. X-ray absorption and dynamic nuclear polarization-enhanced solid-state NMR spectroscopic studies identify the supported precatalyst as an IrI species, and indicate that upon completion of catalysis, multinuclear Ir polyhydrides are not formed. This is consistent with the hypothesis that immobilization of the organometallic Ir species on a surface prevents bimolecular decomposition pathways. Immobilization of the homogeneous IrI fragment onto amorphous silica represents a unique and simple strategy to improve the TON and longevity of a CH4 borylation catalyst.

5.
J Am Chem Soc ; 145(5): 2901-2910, 2023 Feb 08.
Article in English | MEDLINE | ID: mdl-36696148

ABSTRACT

C-H/Et-Al exchange in zirconium-catalyzed reactions of saturated hydrocarbons and AlEt3 affords versatile organoaluminum compounds and ethane. The grafting of commercially available Zr(OtBu)4 on silica/alumina gives monopodal ≡SiO-Zr(OtBu)3 surface pre-catalyst sites that are activated in situ by ligand exchange with AlEt3. The catalytic C-H alumination of dodecane at 150 °C followed by quenching in air affords n-dodecanol as the major product, revealing selectivity for methyl group activation. Shorter hydrocarbon or alcohol products were not detected under these conditions. Catalytic reactions of cyclooctane and AlEt3, however, afford ring-opened products, indicating that C-C bond cleavage occurs readily in methyl group-free reactants. This selectivity for methyl group alumination enables the C-H alumination of polyethylenes, polypropylene, polystyrene, and poly-α-olefin oils without significant chain deconstruction. In addition, the smallest hydrocarbon, methane, undergoes selective mono-alumination under solvent-free catalytic conditions, providing a direct route to Al-Me species.

6.
Angew Chem Int Ed Engl ; 61(15): e202117394, 2022 Apr 04.
Article in English | MEDLINE | ID: mdl-35104028

ABSTRACT

The zeolite-supported lanthanide La(BH4 )x -HY30 catalyzes C-H borylation of benzene with pinacolborane (HBpin), providing a complementary approach to precious, late transition metal-catalyzed borylations. The reactive catalytic species are generated from La grafted at the Brønsted acid sites (BAS) in micropores of the zeolite, whereas silanoate- and aluminoate-grafted sites are inactive under the reaction conditions. During typical catalytic borylations, conversion to phenyl pinacolborane (PhBpin) is zero-order in HBpin concentration. A turnover number (TON) of 167 is accessed by capping external silanols, selectively grafting at BAS sites, and adding HBpin slowly to the reaction.

7.
Inorg Chem ; 61(2): 1067-1078, 2022 Jan 17.
Article in English | MEDLINE | ID: mdl-34962783

ABSTRACT

The immobilization of molecularly precise metal complexes to substrates, such as silica, provides an attractive platform for the design of active sites in heterogeneous catalysts. Specific steric and electronic variations of the ligand environment enable the development of structure-activity relationships and the knowledge-driven design of catalysts. At present, however, the three-dimensional environment of the precatalyst, much less the active site, is generally not known for heterogeneous single-site catalysts. We explored the degree to which NMR-based surface-to-complex interatomic distances could be used to solve the three-dimensional structures of three silica-supported metal complexes. The structure solution revealed unexpected features related to the environment around the metal that would be difficult to discern otherwise. This approach appears to be highly robust and, due to its simplicity, is readily applied to most single-site catalysts with little extra effort.

8.
ChemSusChem ; 14(19): 4181-4189, 2021 Oct 05.
Article in English | MEDLINE | ID: mdl-34038620

ABSTRACT

The energy efficiency, mechanical durability, and environmental compatibility of all moving machine components rely heavily on advanced lubricants for smooth and safe operation. Herein an alternative family of high-quality liquid (HQL) lubricants was derived by the catalytic conversion of pre- and post-consumer polyolefin waste. The plastic-derived lubricants performed comparably to synthetic base oils such as polyalphaolefins (PAOs), both with a wear scar volume (WSV) of 7.5×10-5  mm-3 . HQLs also performed superior to petroleum-based lubricants such as Group III mineral oil with a WSV of 1.7×10-4  mm-3 , showcasing a 44 % reduction in wear. Furthermore, a synergistic reduction in friction and wear was observed when combining the upcycled plastic lubricant with synthetic oils. Life cycle and techno-economic analyses also showed this process to be energetically efficient and economically feasible. This novel technology offers a cost-effective opportunity to reduce the harmful environmental impact of plastic waste on our planet and to save energy through reduction of friction and wear-related degradations in transportation applications akin to synthetic oils.

9.
Chemistry ; 27(40): 10428-10436, 2021 Jul 16.
Article in English | MEDLINE | ID: mdl-33876468

ABSTRACT

Three-coordinate Ph BOX Me 2 ZnR (Ph BOX Me 2 =phenyl-(4,4-dimethyl-oxazolinato; R=Me: 2 a, Et: 2 b) catalyzes the dehydrocoupling of primary or secondary silanes and alcohols to give silyl ethers and hydrogen, with high turnover numbers (TON; up to 107 ) under solvent-free conditions. Primary and secondary silanes react with small, medium, and large alcohols to give various degrees of substitution, from mono- to tri-alkoxylation, whereas tri-substituted silanes do not react with MeOH under these conditions. The effect of coordinative unsaturation on the behavior of the Zn catalyst is revealed through a dramatic variation of both rate law and experimental rate constants, which depend on the concentrations of both the alcohol and hydrosilane reactants. That is, the catalyst adapts its mechanism to access the most facile and efficient conversion. In particular, either alcohol or hydrosilane binds to the open coordination site on the Ph BOX Me 2 ZnOR catalyst to form a Ph BOX Me 2 ZnOR(HOR) complex under one set of conditions or an unprecedented σ-adduct Ph BOX Me 2 ZnOR(H-SiR'3 ) under other conditions. Saturation kinetics provide evidence for the latter species, in support of the hypothesis that σ-bond metathesis reactions involving four-centered electrocyclic 2σ-2σ transition states are preceded by σ-adducts.

10.
Chemistry ; 26(24): 5479-5493, 2020 Apr 24.
Article in English | MEDLINE | ID: mdl-32034950

ABSTRACT

Organoaluminum reagents' application in catalytic C-H bond functionalization is limited by competitive side reactions, such as carboalumination and hydroalumination. Herein, rare-earth tetramethylaluminate complexes are shown to catalyze the exclusive C-H bond metalation of terminal alkynes with the commodity reagents trimethyl-, triethyl-, and triisobutylaluminum. Kinetic experiments probing alkyl-group exchange between rare-earth aluminates and trialkylaluminum, C-H bond metalation of alkynes, and catalytic conversions reveal distinct pathways of catalytic aluminations with triethylaluminum versus trimethylaluminum. Most significantly, kinetic data point to reversible formation of a unique [Ln](AlR4 )2 ⋅AlR3 adduct, followed by turnover-limiting alkyne metalation. That is, C-H bond activation occurs from a more associated organometallic species, rather than the expected coordinatively unsaturated species. These mechanistic conclusions allude to a new general strategy for catalytic C-H bond alumination that make use of highly electrophilic metal catalysts.

SELECTION OF CITATIONS
SEARCH DETAIL
...