Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 25(5)2024 Mar 06.
Article in English | MEDLINE | ID: mdl-38474290

ABSTRACT

Commercial papaya varieties grown in Australia vary greatly in taste and aroma. Previous profiling has identified undesirable 'off tastes' in existing varieties, discouraging a portion of the population from consuming papayas. Our focus on enhancing preferred flavours led to an exploration of the genetic mechanisms and biosynthesis pathways that underlie these desired taste profiles. To identify genes associated with consumer-preferred flavours, we conducted whole RNA sequencing and de novo genome assembly on papaya varieties RB1 (known for its sweet flavour and floral aroma) and 1B (less favoured due to its bitter taste and musty aroma) at both ripe and unripe stages. In total, 180,368 transcripts were generated, and 118 transcripts related to flavours were differentially expressed between the two varieties at the ripe stage. Five genes (cpBGH3B, cpPFP, cpSUS, cpGES and cpLIS) were validated through qPCR and significantly differentially expressed. These genes are suggested to play key roles in sucrose metabolism and aromatic compound production pathways, holding promise for future selective breeding strategies. Further exploration will involve assessing their potential across broader germplasm and various growth environments.


Subject(s)
Carica , Taste , Carica/genetics , Australia , Taste Perception , Flavoring Agents
2.
Int J Mol Sci ; 23(11)2022 Jun 05.
Article in English | MEDLINE | ID: mdl-35682992

ABSTRACT

Inconsistency in flavour is one of the major challenges to the Australian papaya industry. However, objectively measurable standards of the compound profiles that provide preferable taste and aroma, together with consumer acceptability, have not been set. In this study, three red-flesh papayas (i.e., 'RB1', 'RB4', and 'Skybury') and two yellow-flesh papayas (i.e., '1B' and 'H13') were presented to a trained sensory panel and a consumer panel to assess sensory profiles and liking. The papaya samples were also examined for sugar components, total soluble solids, and 14 selected volatile compounds. Additionally, the expression patterns of 10 genes related to sweetness and volatile metabolism were assessed. In general, red papaya varieties had higher sugar content and tasted sweeter than yellow varieties, while yellow varieties had higher concentrations of citrus floral aroma volatiles and higher aroma intensity. Higher concentrations of glucose, linalool oxide, and terpinolene were significantly associated with decreased consumer liking. Significant differences were observed in the expression profiles of all the genes assessed among the selected papaya varieties. Of these, cpGPT2 and cpBGLU31 were positively correlated to glucose production and were expressed significantly higher in '1B' than in 'RB1' or 'Skybury'. These findings will assist in the strategic selective breeding for papaya to better match consumer and, hence, market demand.


Subject(s)
Carica , Australia , Carbohydrates/analysis , Carica/chemistry , Carica/genetics , Flavoring Agents/metabolism , Fruit/metabolism , Glucose/metabolism , Sugars/metabolism , Taste , Vegetables
3.
Genes (Basel) ; 12(9)2021 09 15.
Article in English | MEDLINE | ID: mdl-34573398

ABSTRACT

A major challenge to the papaya industry is inconsistency in fruit quality and, in particular, flavour, which is a complex trait that comprises taste perception in the mouth (sweetness, acidity, or bitterness) and aroma produced by several volatile compounds. Current commercial varieties vary greatly in their taste, likely due to historical prioritised selection for fruit appearance as well as large environmental effects. Therefore, it is important to better understand the genetic and biochemical mechanisms and biosynthesis pathways underpinning preferable flavour in order to select and breed for better tasting new commercial papaya varieties. As an initial step, objectively measurable standards of the compound profiles that provide papaya's taste and aroma, together with 'mouth feel', are required. This review presents an overview of the approaches to characterise the flavour profiles of papaya through sugar component determination, volatile compound detection, sensory panel testing, as well as genomics-based studies to identify the papaya flavour.


Subject(s)
Carica , Fruit/physiology , Odorants , Taste/physiology , Biosynthetic Pathways , Carbohydrate Metabolism/genetics , Carica/genetics , Carica/metabolism , Carica/physiology , Fruit/genetics , Fruit/metabolism , Genomics/methods , Humans , Sugars/metabolism , Taste/genetics , Volatile Organic Compounds/analysis , Volatile Organic Compounds/metabolism
4.
BMC Plant Biol ; 19(1): 449, 2019 Oct 26.
Article in English | MEDLINE | ID: mdl-31655544

ABSTRACT

BACKGROUND: The identification and characterisation of quantitative trait loci (QTL) is an important step towards identifying functional sequences underpinning important crop traits and for developing accurate markers for selective breeding strategies. In this study, a genotyping-by-sequencing (GBS) approach detected QTL conditioning desirable fruit quality traits in papaya. RESULTS: For this, a linkage map was constructed comprising 219 single nucleotide polymorphism (SNP) loci across 10 linkage groups and covering 509 centiMorgan (cM). In total, 21 QTLs were identified for seven key fruit quality traits, including flesh sweetness, fruit weight, fruit length, fruit width skin freckle, flesh thickness and fruit firmness. Several QTL for flesh sweetness, fruit weight, length, width and firmness were stable across harvest years and individually explained up to 19.8% of the phenotypic variance of a particular trait. Where possible, candidate genes were proposed and explored further for their application to marker-assisted breeding. CONCLUSIONS: This study has extended knowledge on the inheritance and genetic control for key papaya physiological and fruit quality traits. Candidate genes together with associated SNP markers represent a valuable resource for the future of strategic selective breeding of elite Australian papaya cultivars.


Subject(s)
Carica/genetics , Fruit/genetics , Genetic Linkage , Polymorphism, Single Nucleotide/genetics , Quantitative Trait Loci/genetics , Australia , Carica/physiology , Chromosome Mapping , Fruit/physiology , Genetic Markers/genetics , Phenotype , Plant Breeding
SELECTION OF CITATIONS
SEARCH DETAIL
...