Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Phys Condens Matter ; 34(43)2022 Aug 30.
Article in English | MEDLINE | ID: mdl-35985303

ABSTRACT

X-ray diffraction, Raman spectroscopy, and electrical resistivity measurements on polycrystalline WTe2-xSex(0 ⩽ x ⩽ 0.8) reveal aTd-1T'structural phase transition and suppression of magnetoresistance atx = 0.2. These phenomena are consistent with the pressure phase diagram of WTe2. However, chemical pressure due to substitution of smaller Se ion cannot generate pressure required for the phase transition. Strain induced by sample inhomogeneity is believed to be a trigger to the behaviors. In agreement with previous predictions and reports, a mixed phase of1T'and 2Hstructures was also detected in Se-rich samples. Coincidentally atx = 0.2, electrical resistivity analysis suggests a phase transition from a metallic phase to a nonmetallic phase that is possibly a topological-insulating phase.

2.
Phys Rev Lett ; 117(22): 227601, 2016 Nov 25.
Article in English | MEDLINE | ID: mdl-27925725

ABSTRACT

We study URu_{2-x}Fe_{x}Si_{2}, in which two types of staggered phases compete at low temperature as the iron concentration x is varied: the nonmagnetic "hidden order" (HO) phase below the critical concentration x_{c}, and unconventional antiferromagnetic (AFM) phase above x_{c}. By using polarization resolved Raman spectroscopy, we detect a collective mode of pseudovectorlike A_{2g} symmetry whose energy continuously evolves with increasing x; it monotonically decreases in the HO phase until it vanishes at x=x_{c}, and then reappears with increasing energy in the AFM phase. The mode's evolution provides direct evidence for a unified order parameter for both nonmagnetic and magnetic phases arising from the orbital degrees-of-freedom of the uranium-5f electrons.

3.
J Phys Condens Matter ; 27(31): 315602, 2015 Aug 12.
Article in English | MEDLINE | ID: mdl-26189502

ABSTRACT

We report the physical properties of single crystals of the compounds CeT2Cd20 (T = Ni, Pd) that were grown in a molten Cd flux. Large separations of ∼6.7-6.8 Šbetween Ce ions favor the localized magnetic moments that are observed in measurements of the magnetization. The strength of the Ruderman-Kittel-Kasuya-Yosida magnetic exchange interaction between the localized moments is severely limited by the large Ce-Ce separations and by weak hybridization between localized Ce 4 f and itinerant electron states. Measurements of electrical resistivity performed down to 0.138 K were unable to observe evidence for the emergence of magnetic order; however, magnetically-ordered ground states with very low transition temperatures are still expected in these compounds despite the isolated nature of the localized magnetic moments. Such a fragile magnetic order could be highly susceptible to tuning via applied pressure, but evidence for the emergence of magnetic order has not been observed so far in our measurements up to 2.5 GPa.

4.
J Phys Condens Matter ; 26(42): 425601, 2014 Oct 22.
Article in English | MEDLINE | ID: mdl-25274176

ABSTRACT

A crossover from a non-Fermi liquid to a Fermi liquid phase in Yb2Ni12P7 is observed by analyzing electrical resistivity ρ(T), magnetic susceptibility χ(T), specific heat C(T), and thermoelectric power S(T) measurements. The electronic contribution to specific heat, Ce(T), behaves as Ce(T)/T∼-ln(T) for 5 K4 K. A crossover between Fermi-liquid and non-Fermi liquid behavior suggests that Yb2Ni12P7 is in close proximity to a quantum critical point, in agreement with results from recent measurements of this compound under applied pressure.

SELECTION OF CITATIONS
SEARCH DETAIL
...