Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
bioRxiv ; 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38948836

ABSTRACT

Cirrhosis, advanced liver disease, affects 2-5 million Americans. While most patients have compensated cirrhosis and may be fairly asymptomatic, many decompensate and experience life-threatening complications such as gastrointestinal bleeding, confusion (hepatic encephalopathy), and ascites, reducing life expectancy from 12 to less than 2 years. Among patients with compensated cirrhosis, identifying patients at high risk of decompensation is critical to optimize care and reduce morbidity and mortality. Therefore, it is important to preferentially direct them towards specialty care which cannot be provided to all patients with cirrhosis. We used discovery Top-down Proteomics (TDP) to identify differentially expressed proteoforms (DEPs) in the plasma of patients with progressive stages of liver cirrhosis with the ultimate goal to identify candidate biomarkers of disease progression. In this pilot study, we identified 209 DEPs across three stages of cirrhosis (compensated, compensated with portal hypertension, and decompensated), of which 115 derived from proteins enriched in the liver at a transcriptional level and discriminated the three stages of cirrhosis. Enrichment analyses demonstrated DEPs are involved in several metabolic and immunological processes known to be impacted by cirrhosis progression. We have preliminarily defined the plasma proteoform signatures of cirrhosis patients, setting the stage for ongoing discovery and validation of biomarkers for early diagnosis, risk stratification, and disease monitoring.

2.
J Proteome Res ; 23(6): 1883-1893, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38497708

ABSTRACT

We introduce single cell Proteoform imaging Mass Spectrometry (scPiMS), which realizes the benefit of direct solvent extraction and MS detection of intact proteins from single cells dropcast onto glass slides. Sampling and detection of whole proteoforms by individual ion mass spectrometry enable a scalable approach to single cell proteomics. This new scPiMS platform addresses the throughput bottleneck in single cell proteomics and boosts the cell processing rate by several fold while accessing protein composition with higher coverage.


Subject(s)
Mass Spectrometry , Proteomics , Single-Cell Analysis , Single-Cell Analysis/methods , Proteomics/methods , Humans , Mass Spectrometry/methods , Proteome/analysis
3.
J Am Soc Mass Spectrom ; 35(3): 476-486, 2024 Mar 06.
Article in English | MEDLINE | ID: mdl-38335063

ABSTRACT

Hydroxyl radical protein footprinting (HRPF) using synchrotron X-ray radiation (XFP) and mass spectrometry is a well-validated structural biology method that provides critical insights into macromolecular structural dynamics, such as determining binding sites, measuring affinity, and mapping epitopes. Numerous alternative sources for generating the hydroxyl radicals (•OH) needed for HRPF, such as laser photolysis and plasma irradiation, complement synchrotron-based HRPF, and a recently developed commercially available instrument based on flash lamp photolysis, the FOX system, enables access to laboratory benchtop HRPF. Here, we evaluate performing HRPF experiments in-house with a benchtop FOX instrument compared to synchrotron-based X-ray footprinting at the NSLS-II XFP beamline. Using lactate oxidase (LOx) as a model system, we carried out •OH labeling experiments using both instruments, followed by nanoLC-MS/MS bottom-up peptide mass mapping. Experiments were performed under high glucose concentrations to mimic the highly scavenging conditions present in biological buffers and human clinical samples, where less •OH are available for reaction with the biomolecule(s) of interest. The performance of the FOX and XFP HRPF methods was compared, and we found that tuning the •OH dosage enabled optimal labeling coverage for both setups under physiologically relevant highly scavenging conditions. Our study demonstrates the complementarity of FOX and XFP labeling approaches, demonstrating that benchtop instruments such as the FOX photolysis system can increase both the throughput and the accessibility of the HRPF technique.


Subject(s)
Hydroxyl Radical , Synchrotrons , Humans , X-Rays , Hydroxyl Radical/chemistry , Protein Footprinting/methods , Tandem Mass Spectrometry , Oxidation-Reduction
SELECTION OF CITATIONS
SEARCH DETAIL
...