Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Dalton Trans ; 46(35): 11800-11805, 2017 Sep 12.
Article in English | MEDLINE | ID: mdl-28831481

ABSTRACT

Introduction of asymmetry into charge-transfer complexes composed of axially ligated iron phthalocyanines was achieved. In the obtained crystals of TPP[FeIII(Pc)(CN)Cl]2, TPP[FeIII(Pc)(CN)Br]2, and TPP[FeIII(Pc)BrCl]2 (TPP = tetraphenylphosphonium and Pc = phthalocyanine), the axial positions of the iron atoms were occupied by 50/50 ratios of the ligands CN/Cl, CN/Br, and Br/Cl, respectively. The crystal structures of the obtained CT complexes were isostructural to those composed of the symmetric analogues of the type [FeIII(Pc)L2] (L = CN, Cl or Br); the [FeIII(Pc)LL'] units formed regular one-dimensional chains along the c-axis following the symmetry of the P42/n space group. Despite forming similar regular chains to the symmetric systems, the electrical resistivities and activation energies were enhanced in the obtained CT complexes compared to those in symmetric systems, indicating that the charge-ordered states were stabilised by the introduction of asymmetry. More specifically, the dielectric relaxation behaviour of the inhomogeneous disordered TPP[FeIII(Pc)(CN)Cl]2 probably suggests that a dipole moment was induced in this material.

2.
Dalton Trans ; 45(42): 16604-16609, 2016 Oct 25.
Article in English | MEDLINE | ID: mdl-27477610

ABSTRACT

By measuring the electrical resistivity in TPP[FeIII(tbp)(CN)2]2 (TPP = tetraphenylphosphonium and tbp = tetrabenzoporphyrin) under the application of a static magnetic field, a giant negative magnetoresistance (MR) effect with high anisotropy is observed. More specifically, the MR ratio at 13 K under a field of 9 T perpendicular to the c axis is -70%, whereas the MR ratio under a field parallel to the c axis is -40%. Furthermore, electron spin resonance (ESR) measurements indicate large anisotropy in the principal g-values of d spin (S = 1/2) in the [FeIII(tbp)(CN)2] unit; the g1 value almost perpendicular to the tbp plane and the g2 and g3 values almost parallel to the tbp plane are 3.60, 1.24, and 0.39, respectively. It is revealed that the anisotropy in the MR effect arises from the anisotropy in the d spin, suggesting that the d spins in TPP[FeIII(tbp)(CN)2]2 affect the π-conduction electron via the intramolecular π-d interaction. The anisotropy and magnitude in the giant negative MR effect for TPP[FeIII(tbp)(CN)2]2 are smaller than the corresponding values for the isostructural phthalocyanine (Pc) analogue TPP[FeIII(Pc)(CN)2]2. This is consistent with the fact that the intermolecular antiferromagnetic d-d interaction in TPP[FeIII(tbp)(CN)2]2 (suggested by the Weiss temperature: Θ = -8.0 K) is weaker than that in TPP[FeIII(Pc)(CN)2]2 (Θ = -12.3 K). This indicates that the minor modification in coordination complexes can significantly affect the MR effect via tuning the intermolecular d-d interaction as well as the intermolecular π-π overlap.

3.
J Am Chem Soc ; 136(19): 7026-37, 2014 May 14.
Article in English | MEDLINE | ID: mdl-24749985

ABSTRACT

We present a comprehensive study of the synthesis, heat capacity, crystal structures, UV-vis-NIR and mid-IR spectra, DFT calculations, and magnetic and electrical properties of a one-dimensional (1D) rhodium(I)-semiquinonato complex, [Rh(3,6-DBSQ-4,5-(MeO)2)(CO)2]∞ (3), where 3,6-DBSQ-4,5-(MeO)2(•-) represents 3,6-di-tert-butyl-4,5-dimethoxy-1,2-benzosemiquinonato radical anion. The compound 3 comprises neutral 1D chains of complex molecules stacked in a staggered arrangement with short Rh-Rh distances of 3.0796(4) and 3.1045(4) Å at 226 K and exhibits unprecedented bistable multifunctionality with respect to its magnetic and conductive properties in the temperature range of 228-207 K. The observed bistability results from the thermal hysteresis across a first-order phase transition, and the transition accompanies the exchange of the interchain C-H···O hydrogen-bond partners between the semiquinonato ligands. The strong overlaps of the complex molecules lead to unusually strong ferromagnetic interactions in the low-temperature (LT) phase. Furthermore, the magnetic interactions in the 1D chain drastically change from strongly ferromagnetic in the LT phase to antiferromagnetic in the room-temperature (RT) phase with hysteresis. In addition, the compound 3 exhibits long-range antiferromagnetic ordering between the ferromagnetic chains and spontaneous magnetization because of spin canting (canted antiferromagnetism) at a transition temperature T(N) of 14.2 K. The electrical conductivity of 3 at 300 K is 4.8 × 10(-4) S cm(-1), which is relatively high despite Rh not being in a mixed-valence state. The temperature dependence of electrical resistivity also exhibits a clear hysteresis across the first-order phase transition. Furthermore, the ferromagnetic LT phase can be easily stabilized up to RT by the application of a relatively weak applied pressure of 1.4 kbar, which reflects the bistable characteristics and demonstrates the simultaneous control of multifunctionality through external perturbation.

SELECTION OF CITATIONS
SEARCH DETAIL
...