Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Zookeys ; 1172: 155-202, 2023.
Article in English | MEDLINE | ID: mdl-37547176

ABSTRACT

The tribes Goniaderini Lacordaire, 1859 and Lupropini Lesne, 1926 within the tenebrionid subfamily Lagriinae Latreille, 1825 have previously been shown to be non-monophyletic by molecular phylogenetic analyses. The tribes and constituent genera are here reviewed and redefined morphologically. As part of tribal redefinitions, we establish PrateiniNew Tribe with type genus Prateus LeConte, 1862. We reestablish the subtribe Phobeliina Ardoin, 1961 Revised Status, which is transferred from Goniaderini and placed as a subtribe of Lagriini Latreille, 1825 where it is comprised of Phobelius Blanchard, 1842, and Rhosaces Champion, 1889 (previously in Lagriini: Statirina Blanchard, 1845). The fossil tribe Archaeolupropini Nabozhenko, Perkovsky, & Nazarenko, 2023 is transferred from Lagriinae to Tetratomidae: Tetratominae Billberg, 1820. Keys to extant tribes and subtribes of Lagriinae and genera of Goniaderini, Lupropini, and Prateini are provided. Generic and species-level changes from this work are as follows: Prateini is comprised of the following 15 genera: Antennoluprops Schawaller, 2007, Ardoiniellus Schawaller, 2013, Bolitrium Gebien, 1914, Enicmosoma Gebien, 1922, Indenicmosoma Ardoin, 1964, Iscanus Fauvel, 1904, Kuschelus Kaszab, 1982, Lorelopsis Champion, 1896, Mesotretis Bates, 1872, Microcalcar Pic, 1925, Micropedinus Lewis, 1894, Paratenetus Spinola, 1845, Prateus, Terametus Motschulsky, 1869, and Tithassa Pascoe, 1860. Lorelus Sharp, 1876 is Returned to Synonymy with Prateus, resulting in the following 49 New Combinations: Prateusangulatus (Doyen & Poinar, 1994), P.angustulus (Champion, 1913), P.armatus (Montrouzier, 1860), P.biroi (Kaszab, 1956), P.blairi (Kaszab, 1955), P.brevicornis (Champion, 1896), P.breviusculus (Champion, 1913), P.caledonicus (Kaszab, 1982), P.carolinensis (Blair, 1940), P.chinensis (Kaszab, 1940), P.clarkei (Kulzer, 1957), P.crassicornis (Broun, 1880), P.crassepunctatus (Kaszab, 1982), P.cribricollis (Kaszab, 1940), P.curvipes (Champion, 1913), P.dybasi (Kulzer, 1957), P.fijianus (Kaszab, 1982), P.fumatus (Lea, 1929), P.glabriventris (Kaszab, 1982), P.greensladei (Kaszab, 1982), P.guadeloupensis (Kaszab, 1940), P.hirtus (Kaszab, 1982), P.ivoirensis (Ardoin, 1969), P.kanak (Kaszab, 1986), P.kaszabi (Watt, 1992), P.laticornis (Watt, 1992), P.latulus (Broun, 1910), P.longicornis (Kaszab, 1982), P.mareensis (Kaszab, 1982), P.marginalis (Broun, 1910), P.niger (Kaszab, 1982), P.norfolkianus (Kaszab, 1982), P.obtusus (Watt, 1992), P.ocularis (Fauvel, 1904), P.opacus (Watt, 1992), P.palauensis (Kulzer, 1957), P.politus (Watt, 1992), P.priscus (Sharp, 1876), P.prosternalis (Kaszab, 1982), P.pubescens (Broun, 1880), P.pubipennis (Lea, 1929), P.punctatus (Watt, 1992), P.quadricollis (Broun, 1886), P.queenslandicus (Kaszab, 1986), P.rugifrons (Champion, 1913), P.solomonis (Kaszab, 1982), P.tarsalis (Broun, 1910), P.unicornis (Kaszab, 1982), and P.watti (Kaszab, 1982). Microlyprops Kaszab, 1939 is placed as a New Synonym of Micropedinus resulting in the following New Combinations: Micropedinusceylonicus (Kaszab, 1939) and M.maderi (Kaszab, 1940). LorelopsisRevised Status is revalidated as a genus and eight species formerly in Lorelus are transferred to it resulting in the following six New Combinations: Lorelopsisbicolor (Doyen, 1993), L.glabrata (Doyen, 1993), L.exilis (Champion, 1913), L.foraminosa (Doyen & Poinar, 1994), L.minutulis (Doyen & Poinar, 1994), L.trapezidera (Champion, 1913), and L.wolcotti (Doyen, 1993). Lorelopsispilosa Champion, 1896 becomes a Restored Combination. In Goniaderini, Aemymone Bates, 1868 Revised Status and Opatresthes Gebien, 1928 Revised Status, which were recently considered as subgenera of Goniadera Perty, 1832, are restored as valid genera based on new character analysis resulting in the following New Combinations: Aemymonehansfranzi (Ferrer & Delatour, 2007), A.simplex (Fairmaire, 1889), A.striatipennis (Pic, 1934) and Restored Combinations: Aemymonecariosa (Bates, 1868), A.crenata Champion, 1893, and A.semirufa Pic, 1917. Gamaxus Bates, 1868 is Returned to Synonymy with Phymatestes Pascoe, 1866, and the type species Gamaxushauxwelli Bates, 1868 is placed as a New Synonym of Phymatestesbrevicornis (Lacordaire, 1859). The following seven genera are placed as New Synonyms of Anaedus Blanchard, 1842: Microanaedus Pic, 1923, Pengaleganus Pic, 1917, Pseudanaedus Gebien, 1921, Pseudolyprops Fairmaire, 1882, Spinolyprops Pic, 1917, Spinadaenus Pic, 1921, and Sphingocorse Gebien, 1921. Fourteen species described by Pic in Aspisoma Duponchel & Chevrolat, 1841 (not Aspisoma Laporte, 1833) are returned to Tenebrionidae as valid species of Anaedus. These synonymies necessitate the following 51 New Combinations: Anaedusalbipes (Gebien, 1921), A.amboinensis (Kaszab, 1964), A.amplicollis (Fairmaire, 1896), A.anaedoides (Gebien, 1921), A.angulicollis (Gebien, 1921), A.angustatus (Pic, 1921), A.australiae (Carter, 1930), A.bartolozzii (Ferrer, 2002), A.beloni Fairmaire, 1888), A.biangulatus (Gebien, 1921), A.borneensis (Pic, 1917), A.carinicollis (Gebien, 1921), A.conradti (Gebien, 1921), A.cribricollis (Schawaller, 2012), A.gabonicus (Pic, 1917), A.himalayicus (Kaszab, 1965), A.inaequalis (Pic, 1917), A.jacobsoni (Gebien, 1927), A.lateralis (Pic, 1917), A.latus (Pic, 1917), A.longeplicatus (Gebien, 1921) , A.maculipennis (Schawaller, 2011), A.major (Pic, 1917), A.nepalicus (Kaszab, 1975), A.nigrita (Gebien, 1927), A.notatus (Pic, 1923), A.pakistanicus (Schawaller, 1996), A.pinguis (Gebien, 1927), A.punctatus (Carter, 1914), A.raffrayi (Pic, 1917), A.rufithorax (Pic, 1917), A.rufus (Pic, 1917), A.serrimargo (Gebien, 1914), A.sumatrensis (Pic, 1917), A.terminatus (Gebien, 1921), A.testaceicornis (Pic, 1921), A.testaceipes (Pic, 1917), A.thailandicus (Schawaller, 2012), A.trautneri (Schawaller, 1994); and 13 restored combinations: Anaedusboliviensis (Pic, 1934), A.claveri (Pic, 1917), A.diversicollis (Pic, 1917), A.elongatus (Pic, 1934), A.guyanensis (Pic, 1917), A.holtzi (Pic, 1934), A.inangulatus (Pic, 1934), A.inhumeralis (Pic, 1917), A.mendesensis (Pic, 1917), A.minutus (Pic, 1917), A.rufimembris (Pic, 1932), A.rufipennis (Pic, 1917), A.subelongatus (Pic, 1932). The new synonymies with Anaedus necessitate the following six New Replacement NamesAnaedusmaculipennis (for Spinolypropsmaculatus Kulzer, 1954), A.grimmi (for Aspisomaforticornis Pic, 1917), A.minimus (for Anaedusminutus Pic, 1938), A.merkli (for Anaedusdiversicollis Pic, 1938), A.ottomerkli (for Anaeduslateralis Pic, 1923), A.schawalleri (for Anaedusnepalicus Schawaller, 1994). Capeluprops Schawaller, 2011 is removed from Lupropini and provisionally placed in Laenini Seidlitz, 1895. Plastica Waterhouse, 1903 is transferred from Apocryphini Lacordaire, 1859 to Laenini. Paralorelopsis Marcuzzi, 1994 is removed from Lupropini and provisionally placed in Lagriinae incertae sedis. Pseudesarcus Champion, 1913 is transferred from Lagriinae incertae sedis to Diaperinae incertae sedis. Falsotithassa Pic, 1934 is transferred from Lupropini to Leiochrinini Lewis, 1894 (Diaperinae). Mimocellus Wasmann, 1904 is transferred from Lupropini to Tenebrionidae incertae sedis, and likely belongs in either Diaperinae or Stenochiinae.

2.
Cladistics ; 38(6): 623-648, 2022 12.
Article in English | MEDLINE | ID: mdl-35785491

ABSTRACT

Tok-tokkies are one of the most iconic lineages within Tenebrionidae. In addition to containing some of the largest darkling beetles, this tribe is recognized for its remarkable form of sexual communication known as substrate tapping. Nevertheless, the phylogenetic relationships within the group remain poorly understood. This study investigates the usefulness of female terminalia morphology for delimiting Sepidiini and reconstructing relationships among it. Data on the structure of the ovipositors, genital tubes and spicula ventrali have been generated for >200 species representing 28 Pimeliinae tribes. This dataset was used in a comparative analysis at the subfamilial level, which resulted in recognition of several unique features of tok-tokkie terminalia. Additionally, new features linking phenotypically challenging tribes also were recovered (Cryptochilini + Idisiini + Pimeliini). Secondly, 23 characters linked to the structure of female terminalia were defined for tok-tok beetles. Cladistic analysis demonstrates the nonmonophyletic nature of most of the recognized subtribes. The morphological dataset was analysed separately and in combination with available molecular data (CAD, Wg, cox1, cox2, 28S). All obtained topologies were largely congruent, supporting the following changes: Palpomodina Kaminski & Gearner subtr.n. is erected to accommodate the genera Namibomodes and Palpomodes; Argenticrinis and Bombocnodulus are transferred from Hypomelina to Molurina; 153 species and subspecies previously classified within Psammodes are distributed over three separate genera (Mariazofia Kaminski nom.n., Piesomera stat.r., Psammodes sens.n.). Psammodes sklodowskae Kaminski & Gearner sp.n. is described. Preliminary investigation of the ovipositor of Mariazofia basuto (Koch) comb.n. was carried out with the application of microcomputed tomography, illuminating the muscular system as a reliable reference point for recognizing homologous elements in highly modified ovipositors.


Subject(s)
Coleoptera , Animals , Female , Phylogeny , X-Ray Microtomography , Serogroup , Genitalia
3.
Zootaxa ; 5093(5): 519-532, 2022 Feb 01.
Article in English | MEDLINE | ID: mdl-35391470

ABSTRACT

Blapstinus Dejean is the most taxonomically challenging genus within Blapstinina Mulsant Rey (Tenebrionidae: Opatrini). With over 120 species, it is widely distributed throughout the Americas, with representatives reaching Canada on the northern range edge, and Argentina, Chile, and Uruguay in the south. Traditionally, Blapstinus has been distinguished from other blapstinoid beetles via well-developed metathoracic wings and their lack of synapomorphies present in other genera; however, fused and tapering aedeagal parameres were recently introduced as a potential autapomorphy for the genus. This study used molecular data (nuclear ribosomal 28S, cytochrome oxidase subunit II (COII), arginine kinase (ArgK), carbomyl-phosphate synthetase domain of rudimentary (CAD), and wingless (wg)) to investigate the phylogenetic placement and taxonomic status of three Blapstinus species with distinct male genitalic morphology, i.e. Blapstinus tibialis Champion (USA), B. grandis Champion (Mexico, Nicaragua), and B. punctulatus Solier (Argentina, Bolivia, Brazil, Chile, Uruguay). Analyses highlight the phylogenetic informativeness of the aedeagal morphology within the subtribe, and support an urgent need for taxonomic studies of South American taxa. Blapstinus tibialis and B. grandis were recovered as a specific lineage within Blapstinus that can be easily distinguished from remaining congeners by having tridentate parameres. A lectotype for B. grandis is designated to fix the taxonomic status of this species. Blapstinus punctulatus was recovered outside of its current genus which, along with aedeagal morphology, supports a change of status of the species. As a result, the following synonymy and combinations are introduced: Lodinus Mulsant and Rey stat. restit. (=Austrocaribius Marcuzzi syn. nov.), Lodinus araguae (Marcuzzi) comb. et stat. nov., L. punctulatus comb. nov., L. venezuelensis (Marcuzzi) comb. nov. Lectotypes for Lodinus nigroaeneus Mulsant and Rey, L. araguae, and L. punctulatus are designated to fix the taxonomic status of these species.


Subject(s)
Coleoptera , Animals , Male , Phylogeny
4.
Sci Rep ; 11(1): 12635, 2021 06 16.
Article in English | MEDLINE | ID: mdl-34135378

ABSTRACT

The study of ancient DNA is revolutionizing our understanding of paleo-ecology and the evolutionary history of species. Insects are essential components in many ecosystems and constitute the most diverse group of animals. Yet they are largely neglected in ancient DNA studies. We report the results of the first targeted investigation of insect ancient DNA to positively identify subfossil insects to species, which includes the recovery of endogenous content from samples as old as ~ 34,355 ybp. Potential inhibitors currently limiting widespread research on insect ancient DNA are discussed, including the lack of closely related genomic reference sequences (decreased mapping efficiency) and the need for more extensive collaborations with insect taxonomists. The advantages of insect-based studies are also highlighted, especially in the context of understanding past climate change. In this regard, insect remains from ancient packrat middens are a rich and largely uninvestigated resource for exploring paleo-ecology and species dynamics over time.


Subject(s)
Arthropods/genetics , DNA, Ancient/analysis , Sequence Analysis, DNA/veterinary , Sigmodontinae/parasitology , Animals , DNA, Mitochondrial/genetics , Fossils , Gene Library , High-Throughput Nucleotide Sequencing , RNA, Ribosomal, 28S/genetics , Sigmodontinae/genetics
5.
Zookeys ; 898: 83-102, 2019.
Article in English | MEDLINE | ID: mdl-31875088

ABSTRACT

The taxonomic concept of the genus Machleida Fåhraeus, 1870 is tested and revised based on newly identified material. The following new species are described: Machleida banachi, M. flagstaffensis, M. tarskii, and M. zofiae Kaminski. Machleida capillosa Wilke, 1925 is considered as a junior subjective synonym of Asida devia Péringuey, 1899. Asida lecta Péringuey, 1899 (= Pseudomachla recurva Wilke, 1925) (transferred to Afrasida), Machleida nossibiana Fairmaire, 1897 (transferred to Scotinesthes), and Machleida tuberosa Wilke, 1925 (interpreted as incertae sedis in Asidini) are excluded from Machleida. An identification key for the species of the newly revised Machleida is provided. The present paper brings the total number of species within the genus to six (M. banachi sp. nov.; M. devia (Péringuey, 1899); M. flagstaffensis sp. nov.; M. nodulosa Fåhraeus, 1870; M. tarskii sp. nov.; M. zofiae Kaminski sp. nov.). The morphology of female terminalia (ovipositor and genital tubes) is described for the genus for the first time.

6.
Zookeys ; 844: 1-121, 2019.
Article in English | MEDLINE | ID: mdl-31143077

ABSTRACT

This catalogue includes all valid family-group (six subtribes), genus-group (55 genera, 33 subgenera), and species-group names (1009 species and subspecies) of Sepidiini darkling beetles (Coleoptera: Tenebrionidae: Pimeliinae), and their available synonyms. For each name, the author, year, and page number of the description are provided, with additional information (e.g., type species for genus-group names, author of synonymies for invalid taxa, notes) depending on the taxon rank. Verified distributional records (loci typici and data acquired from revisionary publications) for all the species are gathered. Distribution of the subtribes is illustrated and discussed. Several new nomenclatural acts are included. The generic names Phanerotomea Koch, 1958 [= Ocnodes Fåhraeus, 1870] and Parmularia Koch, 1955 [= Psammodes Kirby, 1819] are new synonyms (valid names in square brackets). The following new combinations are proposed: Ocnodesacuductusacuductus (Ancey, 1883), O. acuductusufipanus (Koch, 1952), O. adamantinus (Koch, 1952), O. argenteofasciatus (Koch, 1953), O. arnoldiarnoldi (Koch, 1952), O. arnoldisabianus (Koch, 1952), O.barbosai (Koch, 1952), O.basilewskyi (Koch, 1952), O.bellmarleyi (Koch, 1952), O. benguelensis (Koch, 1952), O. bertolonii (Guérin-Méneville, 1844), O. blandus (Koch, 1952), O. brevicornis (Haag-Rutenberg, 1875), O. brunnescensbrunnescens (Haag-Rutenberg, 1871), O. brunnescensmolestus (Haag-Rutenberg, 1875), O. buccinator (Koch, 1952), O. bushmanicus (Koch, 1952), O. carbonarius (Gerstaecker, 1854), O. cardiopterus (Fairmaire, 1888), O. cataractus (Koch, 1952), O. cinerarius (Koch, 1952), O. complanatus (Koch, 1952), O. confertus (Koch, 1952), O. congruens (Péringuey, 1899), O. cordiventris (Haag-Rutenberg, 1871), O. crocodilinus (Koch, 1952), O. dimorphus (Koch, 1952), O. distinctus (Haag-Rutenberg, 1871), O. dolosus (Péringuey, 1899), O. dorsocostatus (Gebien, 1910), O. dubiosus (Péringuey, 1899), O. ejectus (Koch, 1952), O. epronoticus (Koch, 1952), O. erichsoni (Haag-Rutenberg, 1871), O. ferreiraeferreirae (Koch, 1952), O. ferreiraezulu (Koch, 1952), O. fettingi (Haag-Rutenberg, 1875), O. fistucans (Koch, 1952), O. fraternus (Haag-Rutenberg, 1875), O. freyi (Koch, 1952), O. freudei (Koch, 1952), O. fulgidus (Koch, 1952), O. funestus (Haag-Rutenberg, 1871), O. gemmeulus (Koch, 1952), O. gibberosulus (Péringuey, 1908), O. gibbus (Haag-Rutenberg, 1879), O. globosus (Haag-Rutenberg, 1871), O. granisterna (Koch, 1952), O. granulosicollis (Haag-Rutenberg, 1871), O.gridellii (Koch, 1960), O. gueriniguerini (Haag-Rutenberg, 1871), O. guerinilawrencii (Koch, 1954), O. guerinimancus (Koch 1954), O. haemorrhoidalishaemorrhoidalis (Koch, 1952), O. haemorrhoidalissalubris (Koch, 1952), O. heydeni (Haag-Rutenberg, 1871), O. humeralis (Haag-Rutenberg, 1871), O. humerangula (Koch, 1952), O. imbricatus (Koch, 1952), O.imitatorimitator (Péringuey, 1899), O. imitatorinvadens (Koch, 1952), O. inflatus (Koch, 1952), O. janssensi (Koch, 1952), O. javeti (Haag-Rutenberg, 1871), O. junodi (Péringuey, 1899), O. kulzeri (Koch, 1952), O. lacustris (Koch, 1952), O. laevigatus (Olivier, 1795), O. lanceolatus (Koch, 1953), O. licitus (Peringey, 1899), O. luctuosus (Haag-Rutenberg, 1871), O. luxurosus (Koch, 1952), O. maputoensis (Koch, 1952), O. marginicollis (Koch, 1952), O. martinsi (Koch, 1952), O. melleus (Koch, 1952), O. mendicusestermanni (Koch, 1952), O. mendicusmendicus (Péringuey, 1899), O. miles (Péringuey, 1908), O. mimeticus (Koch, 1952), O. misolampoides (Fairmaire, 1888), O. mixtus (Haag-Rutenberg, 1871), O. monacha (Koch, 1952), O. montanus (Koch, 1952), O. mozambicus (Koch, 1952), O. muliebriscurtus (Koch, 1952), O. muliebrismuliebris (Koch, 1952), O. muliebrissilvestris (Koch, 1952), O. nervosus (Haag-Rutenberg, 1871), O.notatum (Thunberg, 1787), O. notaticollis (Koch, 1952), O. odorans (Koch, 1952), O. opacus (Solier, 1843), O. osbecki (Billberg, 1815), O. overlaeti (Koch, 1952), O. ovulus (Haag-Rutenberg, 1871), O. pachysomaornata (Koch, 1952), O. pachysomapachysoma (Péringuey, 1892), O. papillosus (Koch, 1952), O. pedator (Fairmaire, 1888), O. perlucidus (Koch, 1952), O. planus (Koch, 1952), O. pretorianus (Koch, 1952), O. procursus (Péringuey, 1899), O. protectus (Koch, 1952), O. punctatissimus (Koch, 1952), O. puncticollis (Koch, 1952), O. punctipennisplanisculptus (Koch, 1952), O. punctipennispunctipennis (Harold, 1878), O. punctipleura (Koch, 1952), O. rhodesianus (Koch, 1952), O. roriferus (Koch, 1952), O. rufipes (Harold, 1878), O. saltuarius (Koch, 1952), O.scabricollis (Gerstaecker, 1854), O. scopulipes (Koch, 1952), O. scrobicollisgriqua (Koch, 1952), O. scrobicollissimulans (Koch, 1952), O. semirasus (Koch, 1952), O. semiscabrum (Haag-Rutenberg, 1871), O. sericicollis (Koch, 1952), O.similis (Péringuey, 1899), O. sjoestedti (Gebien, 1910), O. spatulipes (Koch, 1952), O. specularis (Péringuey, 1899), O. spinigerus (Koch, 1952), O. stevensoni (Koch, 1952), O. tarsocnoides (Koch, 1952), O. temulentus (Koch, 1952), O. tenebrosusmelanarius (Haag-Rutenberg, 1871), O. tenebrosustenebrosus (Erichson, 1843), O. tibialis (Haag-Rutenberg, 1871), O. torosus (Koch, 1952), O. transversicollis (Haag-Rutenberg, 1879), O. tumidus (Haag-Rutenberg, 1871), O. umvumanus (Koch, 1952), O. vagus (Péringuey, 1899), O. vaticinus (Péringuey, 1899), O. verecundus (Péringuey, 1899), O. vetustus (Koch, 1952), O. vexator (Péringuey, 1899), O. virago (Koch, 1952), O. warmeloi (Koch, 1953), O. zanzibaricus (Haag-Rutenberg, 1875), Psammophanesantinorii (Gridelli, 1939), and P.mirei (Pierre, 1979). The type species [placed in square brackets] of the following genus-group taxa are designated for the first time, Ocnodes Fåhraeus, 1870 [Ocnodesscrobicollis Fåhraeus, 1870], Psammodophysis Péringuey, 1899 [Psammodophysisprobes Péringuey, 1899], and Trachynotidus Péringuey, 1899 [Psammodesthoreyi Haag-Rutenberg, 1871]. A lectotype is designated for Histrionotusomercooperi Koch, 1955 in order to fix its taxonomic status. Ulamus Kaminski is introduced here as a replacement name for Echinotus Marwick, 1935 [Type species. Aviculaechinata Smith, 1817] (Mollusca: Pteriidae) to avoid homonymy with Echinotus Solier, 1843 (Coleoptera: Tenebrionidae).

7.
Mol Phylogenet Evol ; 132: 151-176, 2019 03.
Article in English | MEDLINE | ID: mdl-30468941

ABSTRACT

Using data from two nuclear ribosomal genes and four nuclear protein-coding genes, we infer a well-resolved phylogeny of major lineages of the carabid beetle supertribe Trechitae, based upon a sampling of 259 species. Patrobini is the sister group of Trechitae, but the genus Lissopogonus appears to be outside of the Patrobini + Trechitae clade. We find that four enigmatic trechite genera from the Southern Hemisphere, Bembidarenas, Argentinatachoides, Andinodontis, and Tasmanitachoides, form a clade that is the sister group of Trechini; we describe this clade as a new tribe, Bembidarenini. Bembidarenini + Trechini form the sister group of remaining trechites. Within Trechini, subtribe Trechodina is not monophyletic, as three trechodine genera from Australia (Trechobembix, Paratrechodes, Cyphotrechodes) are the sister group of subtribe Trechina. Trechini appears to have originated in the continents of the Southern Hemisphere, with almost all Northern Hemisphere lineages representing a single radiation within the subtribe Trechina. We present moderate evidence that the geographically and phylogenetically isolated genera Sinozolus (six species in the mountains of China), Chaltenia (one species in Argentina and Chile), and Phrypeus (one species in western North America) also form a clade, the tribe Sinozolini. The traditionally recognized tribe Bembidiini sens. lat., diagnosed by the presence of a subulate terminal palpomere, is shown to be polyphyletic; subulate palpomeres have arisen five times within Trechitae. Anillini is monophyletic, and the sister group of Tachyini + Pogonini + Bembidiini + Zolini + Sinozolini; within anillines, we confirm earlier results indicating the eyed New Zealand genus Nesamblyops as the sister to the rest. Sampled New World Pogonini are monophyletic, rendering the genus Pogonus non-monophyletic. Tachyina and Xystosomina are sister groups. Within Xystosomina, the New World members are monophyletic, and are sister to an Australia-New Zealand clade. The latter consists of the genus Philipis as well as taxa not previously recognized as xystosomines: Kiwitachys, the "Tachys" ectromioides group, and "Tachys" mulwalensis. Within Tachyina, the subgenus Elaphropus is not closely related to other subgenera previously placed in the genus Elaphropus; we move the other subgenera into the genus Tachyura. Tachyina with a bifoveate mentum do not form a clade; in fact, a bifoveate mentum is found in Xystosomina, Sinozolini, Trechini, Trechitae and its sister group, Patrobini. Extensive homoplasy in the morphological characters previously used as key indicators of relationship is supported by our results: in addition to multiple origins of subulate palpomeres and bifoveate menta, a concave protibial notch has arisen independently in Anillina, Xystosomina, and Tachyina. Phylogenetically and geographically isolated, species-poor lineages in Trechini, Bembidarenini, and Sinozolini may be relicts of more widespread faunas; many of these are found today on gravel or sand shores of creeks and rivers, which may be an ancestral habitat for portions of Trechitae. In addition to the description of Bembidarenini, we present a diagnosis of the newly delimited Sinozolini, and keys to the tribes of Trechitae.


Subject(s)
Coleoptera/classification , Alcohol Oxidoreductases/classification , Alcohol Oxidoreductases/genetics , Animals , Arginine Kinase/classification , Arginine Kinase/genetics , Coleoptera/anatomy & histology , Coleoptera/growth & development , Ecosystem , Larva/anatomy & histology , Phylogeny , RNA, Ribosomal, 18S/classification , RNA, Ribosomal, 18S/genetics , RNA, Ribosomal, 28S/classification , RNA, Ribosomal, 28S/genetics
8.
Zookeys ; (688): 135-149, 2017.
Article in English | MEDLINE | ID: mdl-29118594

ABSTRACT

The tribe Eschatoporini Blaisdell, 1906 is reinstated, based on molecular and morphological data, and the spelling corrected as Eschatoporiini. The tribe currently includes only the cave-dwelling genus Eschatoporis Blaisdell, 1906 from California, which is associated with underground aquifers. A second species of Eschatoporis is described from a cave in Napa County, California. The phylogenetic placement of Eschatoporiini within the Lagriinae is examined, and notes on the biology of Eschatoporis are provided.

9.
Zookeys ; (632): 75-91, 2016.
Article in English | MEDLINE | ID: mdl-27920606

ABSTRACT

Stygoporus oregonensis Larson & LaBonte is a little-known subterranean diving beetle, which, until recently, had not been collected since the type series was taken from a shallow well in western Oregon, USA, in 1984. Here we report the discovery of additional specimens collected from a nearby well in the Willamette Valley. Sequence data from four mitochondrial genes, wingless, and histone III place Stygoporus Larson & LaBonte in the predominantly Mediterranean subtribe Siettitiina of the Hydroporini. Morphological support for these results is discussed, and details of the collecting circumstances of the new specimens are presented. We argue that the biogeographic patterns of Nearctic Siettitiina highlight the likelihood of additional undiscovered subterranean dytiscids in North America.

10.
PLoS One ; 10(12): e0143929, 2015.
Article in English | MEDLINE | ID: mdl-26716693

ABSTRACT

In this paper we explore high-throughput Illumina sequencing of nuclear protein-coding, ribosomal, and mitochondrial genes in small, dried insects stored in natural history collections. We sequenced one tenebrionid beetle and 12 carabid beetles ranging in size from 3.7 to 9.7 mm in length that have been stored in various museums for 4 to 84 years. Although we chose a number of old, small specimens for which we expected low sequence recovery, we successfully recovered at least some low-copy nuclear protein-coding genes from all specimens. For example, in one 56-year-old beetle, 4.4 mm in length, our de novo assembly recovered about 63% of approximately 41,900 nucleotides in a target suite of 67 nuclear protein-coding gene fragments, and 70% using a reference-based assembly. Even in the least successfully sequenced carabid specimen, reference-based assembly yielded fragments that were at least 50% of the target length for 34 of 67 nuclear protein-coding gene fragments. Exploration of alternative references for reference-based assembly revealed few signs of bias created by the reference. For all specimens we recovered almost complete copies of ribosomal and mitochondrial genes. We verified the general accuracy of the sequences through comparisons with sequences obtained from PCR and Sanger sequencing, including of conspecific, fresh specimens, and through phylogenetic analysis that tested the placement of sequences in predicted regions. A few possible inaccuracies in the sequences were detected, but these rarely affected the phylogenetic placement of the samples. Although our sample sizes are low, an exploratory regression study suggests that the dominant factor in predicting success at recovering nuclear protein-coding genes is a high number of Illumina reads, with success at PCR of COI and killing by immersion in ethanol being secondary factors; in analyses of only high-read samples, the primary significant explanatory variable was body length, with small beetles being more successfully sequenced.


Subject(s)
High-Throughput Nucleotide Sequencing , Insecta/genetics , Museums , Nuclear Proteins/genetics , Open Reading Frames , Animals , Cluster Analysis , Computational Biology , Gene Dosage , Molecular Sequence Data , Phylogeny , Reproducibility of Results , Sequence Analysis, DNA , Terminology as Topic
11.
Mol Phylogenet Evol ; 65(3): 926-39, 2012 Dec.
Article in English | MEDLINE | ID: mdl-22982437

ABSTRACT

The halictid bees are excellent models for the study of social evolution because greater social diversity and plasticity are observed in the tribe Halictini than in any other comparable taxonomic group. We examine the evolutionary relationships within the subfamily Halictinae ("sweat bees") to investigate the origins of social behaviour within the tribe Halictini. We present a new phylogeny of the subfamily Halictinae based on three nuclear genes (elongation factor-1 alpha, wingless, and long-wavelength rhodopsin) and one mitochondrial gene (cytochrome c oxidase 1) sequenced for 206 halictine bees. We use model-based character reconstruction to infer the probability of a shared eusocial ancestor for the genera Halictus and Lasioglossum, the two genera of Halictini which display eusociality. Our results suggest a high probability for a single origin of eusociality for these two genera, contradicting earlier views of separate origins within each taxon. Fossil-calibrated divergence estimates place this ancestor at approximately 35 million years ago, about 14 million years earlier than previous estimates of eusocial origins in the halictid bees.


Subject(s)
Bees/genetics , Phylogeny , Social Behavior , Animals , Bayes Theorem , Bees/classification , Behavior, Animal , Cell Nucleus/genetics , DNA, Mitochondrial/genetics , Fossils , Genes, Insect , Likelihood Functions , Models, Genetic , Sequence Analysis, DNA
SELECTION OF CITATIONS
SEARCH DETAIL
...