Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
1.
G3 (Bethesda) ; 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38860489

ABSTRACT

Copidosoma floridanum is a cosmopolitan species and an egg-larval parasitoid of the Plusiine moth. C. floridanum has a unique development mode called polyembryony, in which over two thousands of genetically identical embryos are produced from a single egg. Some embryos develop into sterile soldier larvae precociously, and their emergence period and aggressive behavior are differed between the US and Japanese C. floridanum strains. Genome sequencing expects to contribute our understanding of the molecular bases underlying progression of polyembryony. However, only the genome sequence of the US strain from generating by short-read assembly has been reported. In the present study, we determined the genome sequence of the Japanese strain using Pacific Biosciences high-fidelity reads and generating a highly contiguous assembly (552.7 Mb, N50: 17.9 Mb). Gene prediction and annotation identified 13,886 transcripts derived from 10,786 gene models. We searched the genomic differences between US and Japanese strains. Among gene models predicted in this study, 100 gene loci in the Japanese strain had extremely different gene structure from those in the US strain. This was accomplished through the functional annotation (GGSEARCH) and long-read sequencing. Genomic differences between strains were also reflected to amino acid sequences of vasa that plays a central role in caste determination in this species. The genome assemblies constructed in this study will facilitate the genomic comparisons between Japanese and US strains, leading to our understanding of detail genomic regions responsible for the ecological and physiological characters of C. floridanum.

2.
Circ Rep ; 5(8): 338-347, 2023 Aug 10.
Article in English | MEDLINE | ID: mdl-37564879

ABSTRACT

Background: The utility of telomere G-tail length to predict coronary artery disease (CAD) remains controversial. CAD results from coronary artery narrowing due to cholesterol and lipid accumulation, augmented by inflammatory cells and other factors. This study explored the significance of telomere G-tail length in suspected CAD patients. Methods and Results: In all, 95 patients with suspected CAD or ≥1 cardiac risk factor underwent coronary computed tomography angiography (CCTA). We measured leukocyte telomere length and G-tail length using a hybrid protection method, and diagnosed the presence of CAD using CCTA. Associations between G-tail length and the presence of CAD, the number of stenosed coronary arteries, and brachial-ankle pulse wave velocity (baPWV) were analyzed. No significant difference was observed in G-tail length when comparing groups with or without CAD or statin treatment. However, in the non-statin group, G-tail length was significantly shorter in patients with 3-vessel disease compared with 1-vessel disease. Dividing the group using a baPWV of 1,300 cm/s, telomere G-tail length was significantly shorter in the high-risk (baPWV ≥1,300 cm/s) group. Conclusions: The clinical utility of telomere G-tail length as a CAD risk indicator seems limited. There was a trend for longer telomere G-tail length in the statin-treated group. Moreover, telomere G-tail length was reduced in patients at high-risk of cardiovascular events, aligning with the trend of a shortening in telomere G-tail length with CAD severity.

3.
Commun Biol ; 6(1): 395, 2023 04 11.
Article in English | MEDLINE | ID: mdl-37041231

ABSTRACT

The decrease of antibody efficacy to mutated SARS-CoV-2 spike RBD explains the breakthrough infections and reinfections by Omicron variants. Here, we analyzed broadly neutralizing antibodies isolated from long-term hospitalized convalescent patients of early SARS-CoV-2 strains. One of the antibodies named NCV2SG48 is highly potent to broad SARS-CoV-2 variants including Omicron BA.1, BA.2, and BA.4/5. To reveal the mode of action, we determined the sequence and crystal structure of the Fab fragment of NCV2SG48 in a complex with spike RBD from the original, Delta, and Omicron BA.1. NCV2SG48 is from a minor VH but the multiple somatic hypermutations contribute to a markedly extended binding interface and hydrogen bonds to interact with conserved residues at the core receptor-binding motif of RBD, which efficiently neutralizes a broad spectrum of variants. Thus, eliciting the RBD-specific B cells to the longitudinal germinal center reaction confers potent immunity to broad SARS-CoV-2 variants emerging one after another.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Antibodies , Immunoglobulin Fab Fragments
4.
Genome Biol Evol ; 13(12)2021 12 01.
Article in English | MEDLINE | ID: mdl-34878117

ABSTRACT

Massive corals of the genus Porites, common, keystone reef builders in the Indo-Pacific Ocean, are distinguished by their relative stress tolerance and longevity. In order to identify genetic bases of these attributes, we sequenced the complete genome of a massive coral, Porites australiensis. We developed a genome assembly and gene models of comparable quality to those of other coral genomes. Proteome analysis identified 60 Porites skeletal matrix protein genes, all of which show significant similarities to genes from other corals and even to those from a sea anemone, which has no skeleton. Nonetheless, 30% of its skeletal matrix proteins were unique to Porites and were not present in the skeletons of other corals. Comparative genomic analyses showed that genes widely conserved among other organisms are selectively expanded in Porites. Specifically, comparisons of transcriptomic responses of P. australiensis and Acropora digitifera, a stress-sensitive coral, reveal significant differences in regard to genes that respond to increased water temperature, and some of the genes expanded exclusively in Porites may account for the different thermal tolerances of these corals. Taken together, widely shared genes may have given rise to unique biological characteristics of Porites, massive skeletons and stress tolerance.


Subject(s)
Anthozoa , Sea Anemones , Animals , Anthozoa/genetics , Coral Reefs , Genome , Genomics , Sea Anemones/genetics , Whole Genome Sequencing
6.
Mol Biol Evol ; 38(1): 16-30, 2021 01 04.
Article in English | MEDLINE | ID: mdl-32877528

ABSTRACT

The genus Acropora comprises the most diverse and abundant scleractinian corals (Anthozoa, Cnidaria) in coral reefs, the most diverse marine ecosystems on Earth. However, the genetic basis for the success and wide distribution of Acropora are unknown. Here, we sequenced complete genomes of 15 Acropora species and 3 other acroporid taxa belonging to the genera Montipora and Astreopora to examine genomic novelties that explain their evolutionary success. We successfully obtained reasonable draft genomes of all 18 species. Molecular dating indicates that the Acropora ancestor survived warm periods without sea ice from the mid or late Cretaceous to the Early Eocene and that diversification of Acropora may have been enhanced by subsequent cooling periods. In general, the scleractinian gene repertoire is highly conserved; however, coral- or cnidarian-specific possible stress response genes are tandemly duplicated in Acropora. Enzymes that cleave dimethlysulfonioproprionate into dimethyl sulfide, which promotes cloud formation and combats greenhouse gasses, are the most duplicated genes in the Acropora ancestor. These may have been acquired by horizontal gene transfer from algal symbionts belonging to the family Symbiodiniaceae, or from coccolithophores, suggesting that although functions of this enzyme in Acropora are unclear, Acropora may have survived warmer marine environments in the past by enhancing cloud formation. In addition, possible antimicrobial peptides and symbiosis-related genes are under positive selection in Acropora, perhaps enabling adaptation to diverse environments. Our results suggest unique Acropora adaptations to ancient, warm marine environments and provide insights into its capacity to adjust to rising seawater temperatures.


Subject(s)
Adaptation, Biological , Anthozoa/genetics , Biological Evolution , Climate Change , Fossils , Animals , Genome
7.
Genome Biol Evol ; 13(1)2021 01 07.
Article in English | MEDLINE | ID: mdl-33185681

ABSTRACT

Reef-building corals and photosynthetic, endosymbiotic algae of the family Symbiodiniaceae establish mutualistic relationships that are fundamental to coral biology, enabling coral reefs to support a vast diversity of marine species. Although numerous types of Symbiodiniaceae occur in coral reef environments, Acropora corals select specific types in early life stages. In order to study molecular mechanisms of coral-algal symbioses occurring in nature, we performed whole-genome transcriptomic analyses of Acropora tenuis larvae inoculated with Symbiodinium microadriaticum strains isolated from an Acropora recruit. In order to identify genes specifically involved in symbioses with native symbionts in early life stages, we also investigated transcriptomic responses of Acropora larvae exposed to closely related, nonsymbiotic, and occasionally symbiotic Symbiodinium strains. We found that the number of differentially expressed genes was largest when larvae acquired native symbionts. Repertoires of differentially expressed genes indicated that corals reduced amino acid, sugar, and lipid metabolism, such that metabolic enzymes performing these functions were derived primarily from S. microadriaticum rather than from A. tenuis. Upregulated gene expression of transporters for those metabolites occurred only when coral larvae acquired their natural symbionts, suggesting active utilization of native symbionts by host corals. We also discovered that in Acropora, genes for sugar and amino acid transporters, prosaposin-like, and Notch ligand-like, were upregulated only in response to native symbionts, and included tandemly duplicated genes. Gene duplications in coral genomes may have been essential to establish genomic novelties for coral-algae symbiosis.


Subject(s)
Anthozoa/genetics , Dinoflagellida/genetics , Gene Expression Profiling , Genome , Symbiosis/genetics , Animals , Anthozoa/physiology , Cluster Analysis , Coral Reefs , Dinoflagellida/physiology , Gene Duplication , Gene Expression Regulation , Genomics , Larva , Photosynthesis , Sequence Analysis, DNA , Species Specificity , Symbiosis/physiology , Transcriptome , Whole Genome Sequencing
8.
Cancer Sci ; 111(5): 1856-1861, 2020 May.
Article in English | MEDLINE | ID: mdl-32249523

ABSTRACT

The telomere G-tail (G-tail) plays an essential role in maintaining chromosome stability. In this study, we assessed the leukocyte G-tail length of breast cancer (BC) patients and cancer-free individuals and evaluated the association between the G-tail length and the presence of BC. A significant shortening of the median G-tail length was observed in BC patients compared with cancer-free individuals and was found in the early phase of BC. Our study indicated that the leukocyte G-tail length might be a potential biomarker for BC detection.


Subject(s)
Breast Neoplasms/diagnosis , Leukocytes/ultrastructure , Telomere/metabolism , Adult , Aged , Aged, 80 and over , Biomarkers, Tumor/metabolism , Breast Neoplasms/blood , Breast Neoplasms/ultrastructure , Early Detection of Cancer , Female , Humans , Middle Aged , Telomere Shortening
9.
Genome Biol Evol ; 11(8): 2232-2243, 2019 08 01.
Article in English | MEDLINE | ID: mdl-31347665

ABSTRACT

Dicyemids, previously called "mesozoans" (intermediates between unicellular protozoans and multicellular metazoans), are an enigmatic animal group. They have a highly simplified adult body, comprising only ∼30 cells, and they have a unique parasitic lifestyle. Recently, dicyemids were shown to be spiralians, with affinities to the Platyhelminthes. In order to understand molecular mechanisms involved in evolution of this odd animal, we sequenced the genome of Dicyema japonicum and a reference transcriptome assembly using mixed-stage samples. The D. japonicum genome features a high proportion of repetitive sequences that account for 49% of the genome. The dicyemid genome is reduced to ∼67.5 Mb with 5,012 protein-coding genes. Only four Hox genes exist in the genome, with no clustering. Gene distribution in KEGG pathways shows that D. japonicum has fewer genes in most pathways. Instead of eliminating entire critical metabolic pathways, parasitic lineages likely simplify pathways by eliminating pathway-specific genes, while genes with fundamental functions may be retained in multiple pathways. In principle, parasites can stand to lose genes that are unnecessary, in order to conserve energy. However, whether retained genes in incomplete pathways serve intermediate functions and how parasites overcome the physiological needs served by lost genes, remain to be investigated in future studies.


Subject(s)
Evolution, Molecular , Gene Expression Regulation, Developmental , Genome , Invertebrates/genetics , Parasites/genetics , Proteins/genetics , Animals , Invertebrates/classification , Invertebrates/growth & development , Phylogeny , Transcriptome
10.
Nat Ecol Evol ; 3(6): 989, 2019 Jun.
Article in English | MEDLINE | ID: mdl-31048744

ABSTRACT

The version of this article originally published was not open access, but should have been open access. The error has been corrected, and the paper is now open access with a CC-BY license.

11.
Gigascience ; 8(4)2019 04 01.
Article in English | MEDLINE | ID: mdl-30953569

ABSTRACT

BACKGROUND: Acoels are primitive bilaterians with very simple soft bodies, in which many organs, including the gut, are not developed. They provide platforms for studying molecular and developmental mechanisms involved in the formation of the basic bilaterian body plan, whole-body regeneration, and symbiosis with photosynthetic microalgae. Because genomic information is essential for future research on acoel biology, we sequenced and assembled the nuclear genome of an acoel, Praesagittifera naikaiensis. FINDINGS: To avoid sequence contamination derived from symbiotic microalgae, DNA was extracted from embryos that were free of algae. More than 290x sequencing coverage was achieved using a combination of Illumina (paired-end and mate-pair libraries) and PacBio sequencing. RNA sequencing and Iso-Seq data from embryos, larvae, and adults were also obtained. First, a preliminary ∼17-kilobase pair (kb) mitochondrial genome was assembled, which was deleted from the nuclear sequence assembly. As a result, a draft nuclear genome assembly was ∼656 Mb in length, with a scaffold N50 of 117 kb and a contig N50 of 57 kb. Although ∼70% of the assembled sequences were likely composed of repetitive sequences that include DNA transposons and retrotransposons, the draft genome was estimated to contain 22,143 protein-coding genes, ∼99% of which were substantiated by corresponding transcripts. We could not find horizontally transferred microalgal genes in the acoel genome. Benchmarking Universal Single-Copy Orthologs analyses indicated that 77% of the conserved single-copy genes were complete. Pfam domain analyses provided a basic set of gene families for transcription factors and signaling molecules. CONCLUSIONS: Our present sequencing and assembly of the P. naikaiensis nuclear genome are comparable to those of other metazoan genomes, providing basic information for future studies of genic and genomic attributes of this animal group. Such studies may shed light on the origins and evolution of simple bilaterians.


Subject(s)
Genome, Helminth , Genomics , Platyhelminths/genetics , Animals , Computational Biology/methods , Gene Expression Profiling , Genome Size , Genome, Mitochondrial , Genomics/methods , Molecular Sequence Annotation , Phenotype , Platyhelminths/anatomy & histology , Repetitive Sequences, Nucleic Acid , Transcriptome , Web Browser
12.
Nat Ecol Evol ; 3(5): 811-822, 2019 05.
Article in English | MEDLINE | ID: mdl-30988488

ABSTRACT

Cnidarians are astonishingly diverse in body form and lifestyle, including the presence of a jellyfish stage in medusozoans and its absence in anthozoans. Here, we sequence the genomes of Aurelia aurita (a scyphozoan) and Morbakka virulenta (a cubozoan) to understand the molecular mechanisms responsible for the origin of the jellyfish body plan. We show that the magnitude of genetic differences between the two jellyfish types is equivalent, on average, to the level of genetic differences between humans and sea urchins in the bilaterian lineage. About one-third of Aurelia genes with jellyfish-specific expression have no matches in the genomes of the coral and sea anemone, indicating that the polyp-to-jellyfish transition requires a combination of conserved and novel, medusozoa-specific genes. While no genomic region is specifically associated with the ability to produce a jellyfish stage, the arrangement of genes involved in the development of a nematocyte-a phylum-specific cell type-is highly structured and conserved in cnidarian genomes; thus, it represents a phylotypic gene cluster.


Subject(s)
Scyphozoa , Sea Anemones , Animals , Genome , Genomics
13.
BMC Genomics ; 19(1): 733, 2018 Oct 05.
Article in English | MEDLINE | ID: mdl-30290758

ABSTRACT

BACKGROUND: The striped catfish, Pangasianodon hypophthalmus, is a freshwater and benthopelagic fish common in the Mekong River delta. Catfish constitute a valuable source of dietary protein. Therefore, they are cultured worldwide, and P. hypophthalmus is a food staple in the Mekong area. However, genetic information about the culture stock, is unavailable for breeding improvement, although genetics of the channel catfish, Ictalurus punctatus, has been reported. To acquire genome sequence data as a useful resource for marker-assisted breeding, we decoded a draft genome of P. hypophthalmus and performed comparative analyses. RESULTS: Using the Illumina platform, we obtained both nuclear and mitochondrial DNA sequences. Molecular phylogeny using the mitochondrial genome confirmed that P. hypophthalmus is a member of the family Pangasiidae and is nested within a clade including the families Cranoglanididae and Ictaluridae. The nuclear genome was estimated at approximately 700 Mb, assembled into 568 scaffolds with an N50 of 14.29 Mbp, and was estimated to contain ~ 28,600 protein-coding genes, comparable to those of channel catfish and zebrafish. Interestingly, zebrafish produce gadusol, but genes for biosynthesis of this sunscreen compound have been lost from catfish genomes. The differences in gene contents between these two catfishes were found in genes for vitamin D-binding protein and cytosolic phospholipase A2, which have lost only in channel catfish. The Hox cluster in catfish genomes comprised seven paralogous groups, similar to that of zebrafish, and comparative analysis clarified catfish lineage-specific losses of A5a, B10a, and A11a. Genes for insulin-like growth factor (IGF) signaling were conserved between the two catfish genomes. In addition to identification of MHC class I and sex determination-related gene loci, the hypothetical chromosomes by comparison with the channel catfish demonstrated the usefulness of the striped catfish genome as a marker resource. CONCLUSIONS: We developed genomic resources for the striped catfish. Possible conservation of genes for development and marker candidates were confirmed by comparing the assembled genome to that of a model fish, Danio rerio, and to channel catfish. Since the catfish genomic constituent resembles that of zebrafish, it is likely that zebrafish data for gene functions is applicable to striped catfish as well.


Subject(s)
Aquaculture , Catfishes/growth & development , Catfishes/genetics , Genomics , Animals , Molecular Sequence Annotation , Sex Determination Processes/genetics
14.
BMC Evol Biol ; 18(1): 83, 2018 06 07.
Article in English | MEDLINE | ID: mdl-29879905

ABSTRACT

After publication of Nakano et al. (2017) [1], the authors became aware of the fact that the new species-group name erected for the two specimens of a Japanese xenoturbellid species in the article is not available because Nakano et al. (2017) [1] does not meet the requirement of the amendment of Article 8.5.3 of the International Code of Zoological Nomenclature (the Code) [2]. The authors therefore describe the two xenoturbellids as a new species again in this correction article. Methods for morphological observation, DNA extraction and sequencing were as described in Nakano et al. (2017) [1]. The holotype and paratype specimens are deposited in the National Museum of Nature and Science, Tsukuba (NSMT), Japan. The DNA sequences obtained were deposited in the International Nucleotide Sequence Database (INSD).

15.
Nat Ecol Evol ; 2(1): 141-151, 2018 Jan.
Article in English | MEDLINE | ID: mdl-29203924

ABSTRACT

Nemerteans (ribbon worms) and phoronids (horseshoe worms) are closely related lophotrochozoans-a group of animals including leeches, snails and other invertebrates. Lophotrochozoans represent a superphylum that is crucial to our understanding of bilaterian evolution. However, given the inconsistency of molecular and morphological data for these groups, their origins have been unclear. Here, we present draft genomes of the nemertean Notospermus geniculatus and the phoronid Phoronis australis, together with transcriptomes along the adult bodies. Our genome-based phylogenetic analyses place Nemertea sister to the group containing Phoronida and Brachiopoda. We show that lophotrochozoans share many gene families with deuterostomes, suggesting that these two groups retain a core bilaterian gene repertoire that ecdysozoans (for example, flies and nematodes) and platyzoans (for example, flatworms and rotifers) do not. Comparative transcriptomics demonstrates that lophophores of phoronids and brachiopods are similar not only morphologically, but also at the molecular level. Despite dissimilar head structures, lophophores express vertebrate head and neuronal marker genes. This finding suggests a common origin of bilaterian head patterning, although different heads evolved independently in each lineage. Furthermore, we observe lineage-specific expansions of innate immunity and toxin-related genes. Together, our study reveals a dual nature of lophotrochozoans, where conserved and lineage-specific features shape their evolution.


Subject(s)
Biological Evolution , Genome , Invertebrates/anatomy & histology , Invertebrates/genetics , Animals , Evolution, Molecular , Head/anatomy & histology , Phylogeny
16.
BMC Evol Biol ; 17(1): 245, 2017 12 18.
Article in English | MEDLINE | ID: mdl-29249199

ABSTRACT

BACKGROUND: Xenoturbella is a group of marine benthic animals lacking an anus and a centralized nervous system. Molecular phylogenetic analyses group the animal together with the Acoelomorpha, forming the Xenacoelomorpha. This group has been suggested to be either a sister group to the Nephrozoa or a deuterostome, and therefore it may provide important insights into origins of bilaterian traits such as an anus, the nephron, feeding larvae and centralized nervous systems. However, only five Xenoturbella species have been reported and the evolutionary history of xenoturbellids and Xenacoelomorpha remains obscure. RESULTS: Here we describe a new Xenoturbella species from the western Pacific Ocean, and report a new xenoturbellid structure - the frontal pore. Non-destructive microCT was used to investigate the internal morphology of this soft-bodied animal. This revealed the presence of a frontal pore that is continuous with the ventral glandular network and which exhibits similarities with the frontal organ in acoelomorphs. CONCLUSIONS: Our results suggest that large size, oval mouth, frontal pore and ventral glandular network may be ancestral features for Xenoturbella. Further studies will clarify the evolutionary relationship of the frontal pore and ventral glandular network of xenoturbellids and the acoelomorph frontal organ. One of the habitats of the newly identified species is easily accessible from a marine station and so this species promises to be valuable for research on bilaterian and deuterostome evolution.


Subject(s)
Biological Evolution , Invertebrates/anatomy & histology , Animals , Pacific Ocean , Phylogeny , Species Specificity , X-Ray Microtomography
17.
Zoological Lett ; 3: 6, 2017.
Article in English | MEDLINE | ID: mdl-28560048

ABSTRACT

BACKGROUND: Obtaining phylogenomic data for enigmatic taxa is essential to achieve a better understanding of animal evolution. Dicyemids have long fascinated biologists because of their highly simplified body organization, but their life-cycles remain poorly known. Based on the discovery of the dicyemid DoxC gene, which encodes a spiralian peptide, it has been proposed that dicyemids are members of the Spiralia. Other studies have suggested that dicyemids may have closer affinities to mollusks and annelids. However, the phylogenetic position of dicyemids has remained a matter of debate, leading to an ambiguous picture of spiralian evolution. RESULTS: In the present study, newly sequenced transcriptomic data from Dicyema japonicum were complemented with published transcriptomic data or predicted gene models from 29 spiralian, ecdysozoan, and deuterostome species, generating a dataset (Dataset 1) for phylogenomic analyses, which contains 348 orthologs and 58,124 amino acids. In addition to this dataset, to eliminate systematic errors, two additional sub-datasets were created by removing compositionally heterogeneous or rapidly evolving sites and orthologs from Dataset 1, which may cause compositional heterogeneity and long-branch attraction artifacts. Maximum likelihood and Bayesian inference analyses both placed Dicyema japonicum (Dicyemida) in a clade with Intoshia linei (Orthonectida) with strong statistical support. Furthermore, maximum likelihood analyses placed the Dicyemida + Orthonectida clade within the Gastrotricha, while in Bayesian inference analyses, this clade is sister group to the clade of Gastrotricha + Platyhelminthes. CONCLUSIONS: Whichever the case, in all analyses, Dicyemida, Orthonectida, Gastrotricha, and Platyhelminthes constitute a monophyletic group that is a sister group to the clade of Mollusca + Annelida. Based on present phylogenomic analyses, dicyemids display close affinity to orthonectids, and they may share a common ancestor with gastrotrichs and platyhelminths, rather than with mollusks and annelids. Regarding spiralian phylogeny, the Gnathifera forms the sister group to the Rouphozoa and Lophotrochozoa, as has been suggested by previous studies; thus our analysis supports the traditional acoeloid-planuloid hypothesis of a nearly microscopic, non-coelomate common ancestor of spiralians.

18.
Nature ; 544(7649): 231-234, 2017 04 05.
Article in English | MEDLINE | ID: mdl-28379940

ABSTRACT

The crown-of-thorns starfish (COTS, the Acanthaster planci species group) is a highly fecund predator of reef-building corals throughout the Indo-Pacific region. COTS population outbreaks cause substantial loss of coral cover, diminishing the integrity and resilience of reef ecosystems. Here we sequenced genomes of COTS from the Great Barrier Reef, Australia and Okinawa, Japan to identify gene products that underlie species-specific communication and could potentially be used in biocontrol strategies. We focused on water-borne chemical plumes released from aggregating COTS, which make the normally sedentary starfish become highly active. Peptide sequences detected in these plumes by mass spectrometry are encoded in the COTS genome and expressed in external tissues. The exoproteome released by aggregating COTS consists largely of signalling factors and hydrolytic enzymes, and includes an expanded and rapidly evolving set of starfish-specific ependymin-related proteins. These secreted proteins may be detected by members of a large family of olfactory-receptor-like G-protein-coupled receptors that are expressed externally, sometimes in a sex-specific manner. This study provides insights into COTS-specific communication that may guide the generation of peptide mimetics for use on reefs with COTS outbreaks.


Subject(s)
Coral Reefs , Genome/genetics , Pest Control, Biological , Starfish/genetics , Animals , Anthozoa/parasitology , Australia , Biomimetics , Female , Indian Ocean , Japan , Male , Mass Spectrometry , Nerve Tissue Proteins/chemistry , Nerve Tissue Proteins/metabolism , Pacific Ocean , Proteome/analysis , Proteome/metabolism , Sex Factors , Species Specificity , Starfish/anatomy & histology , Starfish/chemistry , Starfish/enzymology , Transcriptome
19.
Mol Phylogenet Evol ; 109: 337-342, 2017 04.
Article in English | MEDLINE | ID: mdl-28185947

ABSTRACT

Fishes are widely diverse in shape and body size and can quite rapidly undergo these changes. Consequently, some relationships are not clearly resolved with morphological analyses. In the case of fishes of small body size, informative characteristics can be absent due to simplification of body structures. The Parabrotulidae, a small family of diminutive body size consisting of two genera and three species has most recently been classified as either a perciform within the suborder Zoarcoidei or an ophidiiform. Classification of parabrotulids as ophidiiforms has become predominant; however the Parabrotulidae has not yet been investigated in a molecular phylogenetic framework. We examine molecular data from ten genetic loci to more specifically place the Parabrotulidae within the fish tree of life. In a hypothesis testing framework, the Parabrotulidae as a zoarcoid taxon is rejected. Previous identity with zoarcoids due to the one fin ray for each vertebra being present, a characteristic for the Zoarcidae, appears to be an example of convergence. Our results indicate that parabrotulids are viviparous ophidiiforms within the family Bythitidae.


Subject(s)
Biological Evolution , Fishes/classification , Animals , Body Size , Female , Fishes/genetics , Male , Molecular Typing , Perciformes/classification , Perciformes/genetics , Phylogeny , Sequence Analysis, DNA
20.
Zoological Lett ; 2: 3, 2016.
Article in English | MEDLINE | ID: mdl-26900483

ABSTRACT

INTRODUCTION: Bivalve molluscs have flourished in marine environments, and many species constitute important aquatic resources. Recently, whole genome sequences from two bivalves, the pearl oyster, Pinctada fucata, and the Pacific oyster, Crassostrea gigas, have been decoded, making it possible to compare genomic sequences among molluscs, and to explore general and lineage-specific genetic features and trends in bivalves. In order to improve the quality of sequence data for these purposes, we have updated the entire P. fucata genome assembly. RESULTS: We present a new genome assembly of the pearl oyster, Pinctada fucata (version 2.0). To update the assembly, we conducted additional sequencing, obtaining accumulated sequence data amounting to 193× the P. fucata genome. Sequence redundancy in contigs that was caused by heterozygosity was removed in silico, which significantly improved subsequent scaffolding. Gene model version 2.0 was generated with the aid of manual gene annotations supplied by the P. fucata research community. Comparison of mollusc and other bilaterian genomes shows that gene arrangements of Hox, ParaHox, and Wnt clusters in the P. fucata genome are similar to those of other molluscs. Like the Pacific oyster, P. fucata possesses many genes involved in environmental responses and in immune defense. Phylogenetic analyses of heat shock protein70 and C1q domain-containing protein families indicate that extensive expansion of genes occurred independently in each lineage. Several gene duplication events prior to the split between the pearl oyster and the Pacific oyster are also evident. In addition, a number of tandem duplications of genes that encode shell matrix proteins are also well characterized in the P. fucata genome. CONCLUSIONS: Both the Pinctada and Crassostrea lineages have expanded specific gene families in a lineage-specific manner. Frequent duplication of genes responsible for shell formation in the P. fucata genome explains the diversity of mollusc shell structures. These duplications reveal dynamic genome evolution to forge the complex physiology that enables bivalves to employ a sessile lifestyle in the intertidal zone.

SELECTION OF CITATIONS
SEARCH DETAIL
...