Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 94
Filter
1.
Nat Biotechnol ; 2024 May 07.
Article in English | MEDLINE | ID: mdl-38714897

ABSTRACT

A central challenge in developing personalized cancer cell immunotherapy is the identification of tumor-reactive T cell receptors (TCRs). By exploiting the distinct transcriptomic profile of tumor-reactive T cells relative to bystander cells, we build and benchmark TRTpred, an antigen-agnostic in silico predictor of tumor-reactive TCRs. We integrate TRTpred with an avidity predictor to derive a combinatorial algorithm of clinically relevant TCRs for personalized T cell therapy and benchmark it in patient-derived xenografts.

2.
Nature ; 629(8011): 426-434, 2024 May.
Article in English | MEDLINE | ID: mdl-38658764

ABSTRACT

Expansion of antigen-experienced CD8+ T cells is critical for the success of tumour-infiltrating lymphocyte (TIL)-adoptive cell therapy (ACT) in patients with cancer1. Interleukin-2 (IL-2) acts as a key regulator of CD8+ cytotoxic T lymphocyte functions by promoting expansion and cytotoxic capability2,3. Therefore, it is essential to comprehend mechanistic barriers to IL-2 sensing in the tumour microenvironment to implement strategies to reinvigorate IL-2 responsiveness and T cell antitumour responses. Here we report that prostaglandin E2 (PGE2), a known negative regulator of immune response in the tumour microenvironment4,5, is present at high concentrations in tumour tissue from patients and leads to impaired IL-2 sensing in human CD8+ TILs via the PGE2 receptors EP2 and EP4. Mechanistically, PGE2 inhibits IL-2 sensing in TILs by downregulating the IL-2Rγc chain, resulting in defective assembly of IL-2Rß-IL2Rγc membrane dimers. This results in impaired IL-2-mTOR adaptation and PGC1α transcriptional repression, causing oxidative stress and ferroptotic cell death in tumour-reactive TILs. Inhibition of PGE2 signalling to EP2 and EP4 during TIL expansion for ACT resulted in increased IL-2 sensing, leading to enhanced proliferation of tumour-reactive TILs and enhanced tumour control once the cells were transferred in vivo. Our study reveals fundamental features that underlie impairment of human TILs mediated by PGE2 in the tumour microenvironment. These findings have therapeutic implications for cancer immunotherapy and cell therapy, and enable the development of targeted strategies to enhance IL-2 sensing and amplify the IL-2 response in TILs, thereby promoting the expansion of effector T cells with enhanced therapeutic potential.


Subject(s)
CD8-Positive T-Lymphocytes , Cell Proliferation , Dinoprostone , Interleukin-2 , Lymphocytes, Tumor-Infiltrating , Mitochondria , Signal Transduction , Animals , Humans , Mice , CD8-Positive T-Lymphocytes/cytology , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Dinoprostone/metabolism , Down-Regulation , Ferroptosis , Interleukin Receptor Common gamma Subunit/biosynthesis , Interleukin Receptor Common gamma Subunit/deficiency , Interleukin Receptor Common gamma Subunit/metabolism , Interleukin-2/antagonists & inhibitors , Interleukin-2/immunology , Interleukin-2/metabolism , Interleukin-2 Receptor beta Subunit/metabolism , Lymphocytes, Tumor-Infiltrating/cytology , Lymphocytes, Tumor-Infiltrating/immunology , Lymphocytes, Tumor-Infiltrating/metabolism , Mitochondria/metabolism , Oxidative Stress , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , Receptors, Prostaglandin E, EP2 Subtype/metabolism , Receptors, Prostaglandin E, EP2 Subtype/antagonists & inhibitors , Receptors, Prostaglandin E, EP4 Subtype/metabolism , Receptors, Prostaglandin E, EP4 Subtype/antagonists & inhibitors , TOR Serine-Threonine Kinases/metabolism , Tumor Microenvironment/immunology
3.
Nat Commun ; 15(1): 2357, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38490980

ABSTRACT

Circular RNAs (circRNAs) are covalently closed non-coding RNAs lacking the 5' cap and the poly-A tail. Nevertheless, it has been demonstrated that certain circRNAs can undergo active translation. Therefore, aberrantly expressed circRNAs in human cancers could be an unexplored source of tumor-specific antigens, potentially mediating anti-tumor T cell responses. This study presents an immunopeptidomics workflow with a specific focus on generating a circRNA-specific protein fasta reference. The main goal of this workflow is to streamline the process of identifying and validating human leukocyte antigen (HLA) bound peptides potentially originating from circRNAs. We increase the analytical stringency of our workflow by retaining peptides identified independently by two mass spectrometry search engines and/or by applying a group-specific FDR for canonical-derived and circRNA-derived peptides. A subset of circRNA-derived peptides specifically encoded by the region spanning the back-splice junction (BSJ) are validated with targeted MS, and with direct Sanger sequencing of the respective source transcripts. Our workflow identifies 54 unique BSJ-spanning circRNA-derived peptides in the immunopeptidome of melanoma and lung cancer samples. Our approach enlarges the catalog of source proteins that can be explored for immunotherapy.


Subject(s)
Peptides , RNA, Circular , Humans , RNA, Circular/metabolism , RNA, Messenger , Histocompatibility Antigens Class I
4.
Sci Immunol ; 9(92): eadg7995, 2024 Feb 02.
Article in English | MEDLINE | ID: mdl-38306416

ABSTRACT

Adoptive cell therapy (ACT) using ex vivo-expanded tumor-infiltrating lymphocytes (TILs) can eliminate or shrink metastatic melanoma, but its long-term efficacy remains limited to a fraction of patients. Using longitudinal samples from 13 patients with metastatic melanoma treated with TIL-ACT in a phase 1 clinical study, we interrogated cellular states within the tumor microenvironment (TME) and their interactions. We performed bulk and single-cell RNA sequencing, whole-exome sequencing, and spatial proteomic analyses in pre- and post-ACT tumor tissues, finding that ACT responders exhibited higher basal tumor cell-intrinsic immunogenicity and mutational burden. Compared with nonresponders, CD8+ TILs exhibited increased cytotoxicity, exhaustion, and costimulation, whereas myeloid cells had increased type I interferon signaling in responders. Cell-cell interaction prediction analyses corroborated by spatial neighborhood analyses revealed that responders had rich baseline intratumoral and stromal tumor-reactive T cell networks with activated myeloid populations. Successful TIL-ACT therapy further reprogrammed the myeloid compartment and increased TIL-myeloid networks. Our systematic target discovery study identifies potential T-myeloid cell network-based biomarkers that could improve patient selection and guide the design of ACT clinical trials.


Subject(s)
Immunotherapy, Adoptive , Melanoma , Humans , Melanoma/genetics , Lymphocytes, Tumor-Infiltrating/metabolism , Proteomics , CD8-Positive T-Lymphocytes/metabolism , Tumor Microenvironment
5.
Nat Cancer ; 4(10): 1410-1417, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37735588

ABSTRACT

We have previously shown that vaccination with tumor-pulsed dendritic cells amplifies neoantigen recognition in ovarian cancer. Here, in a phase 1 clinical study ( NCT01312376 /UPCC26810) including 19 patients, we show that such responses are further reinvigorated by subsequent adoptive transfer of vaccine-primed, ex vivo-expanded autologous peripheral blood T cells. The treatment is safe, and epitope spreading with novel neopeptide reactivities was observed after cell infusion in patients who experienced clinical benefit, suggesting reinvigoration of tumor-sculpting immunity.


Subject(s)
Ovarian Neoplasms , Vaccines , Humans , Female , Ovarian Neoplasms/therapy , Adoptive Transfer , Vaccination , T-Lymphocytes
6.
Science ; 381(6657): 515-524, 2023 08 04.
Article in English | MEDLINE | ID: mdl-37535729

ABSTRACT

Tumor microenvironments (TMEs) influence cancer progression but are complex and often differ between patients. Considering that microenvironment variations may reveal rules governing intratumoral cellular programs and disease outcome, we focused on tumor-to-tumor variation to examine 52 head and neck squamous cell carcinomas. We found that macrophage polarity-defined by CXCL9 and SPP1 (CS) expression but not by conventional M1 and M2 markers-had a noticeably strong prognostic association. CS macrophage polarity also identified a highly coordinated network of either pro- or antitumor variables, which involved each tumor-associated cell type and was spatially organized. We extended these findings to other cancer indications. Overall, these results suggest that, despite their complexity, TMEs coordinate coherent responses that control human cancers and for which CS macrophage polarity is a relevant yet simple variable.


Subject(s)
Cell Polarity , Chemokine CXCL9 , Head and Neck Neoplasms , Macrophages , Osteopontin , Squamous Cell Carcinoma of Head and Neck , Tumor Microenvironment , Humans , Chemokine CXCL9/analysis , Chemokine CXCL9/metabolism , Head and Neck Neoplasms/immunology , Head and Neck Neoplasms/pathology , Macrophages/immunology , Osteopontin/analysis , Osteopontin/metabolism , Prognosis , Squamous Cell Carcinoma of Head and Neck/immunology , Squamous Cell Carcinoma of Head and Neck/pathology , Cell Polarity/immunology
7.
Nat Commun ; 14(1): 3188, 2023 06 06.
Article in English | MEDLINE | ID: mdl-37280206

ABSTRACT

The success of cancer immunotherapy depends in part on the strength of antigen recognition by T cells. Here, we characterize the T cell receptor (TCR) functional (antigen sensitivity) and structural (monomeric pMHC-TCR off-rates) avidities of 371 CD8 T cell clones specific for neoantigens, tumor-associated antigens (TAAs) or viral antigens isolated from tumors or blood of patients and healthy donors. T cells from tumors exhibit stronger functional and structural avidity than their blood counterparts. Relative to TAA, neoantigen-specific T cells are of higher structural avidity and, consistently, are preferentially detected in tumors. Effective tumor infiltration in mice models is associated with high structural avidity and CXCR3 expression. Based on TCR biophysicochemical properties, we derive and apply an in silico model predicting TCR structural avidity and validate the enrichment in high avidity T cells in patients' tumors. These observations indicate a direct relationship between neoantigen recognition, T cell functionality and tumor infiltration. These results delineate a rational approach to identify potent T cells for personalized cancer immunotherapy.


Subject(s)
Melanoma , Animals , Mice , Melanoma/metabolism , CD8-Positive T-Lymphocytes , Receptors, Antigen, T-Cell/metabolism , Antigens, Neoplasm , Clone Cells/metabolism
8.
Cancers (Basel) ; 15(12)2023 Jun 08.
Article in English | MEDLINE | ID: mdl-37370724

ABSTRACT

Benign prostate hyperplasia (BPH) is a frequent condition in aging men, which affects life quality, causing principally lower urinary tract symptoms. Epidemiologic studies suggest that BPH may raise the risk of developing prostate cancer (PCa), most likely promoting a chronic inflammatory environment. Studies aiming at elucidating the link and risk factors that connect BPH and PCa are urgently needed to develop prevention strategies. The BPH microenvironment, similar to the PCa one, increases immune infiltration of the prostate, but, in contrast to PCa, immunosuppression may not be established yet. In this study, we found that prostate-infiltrating lymphocytes (PILs) expanded from hyperplastic prostate tissue recognized tumor-associated antigens (TAA) and autologous tissue, regardless of the presence of tumor cells. PILs expanded from BPH samples of patients with PCa, however, seem to respond more strongly to autologous tissue. Phenotypic characterization of the infiltrating PILs revealed a trend towards better expanding CD4+ T cells in infiltrates derived from PCa, but no significant differences were found. These findings suggest that T cell tolerance is compromised in BPH-affected prostates, likely due to qualitative or quantitative alterations of the antigenic landscape. Our data support the hypothesis that BPH increases the risk of PCa and may pave the way for new personalized preventive vaccine strategies for these patients.

9.
Am Soc Clin Oncol Educ Book ; 43: e391278, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37364224

ABSTRACT

Over the past decade, the advent of molecular techniques and deeper understanding of the tumor microenvironment (TME) have enabled the development of a multitude of immunotherapy targets and approaches. Despite the revolutionary advancement in immunotherapy, treatment resistance remains a challenge leading to decreased response rate in a significant proportion of patients. As such, there has recently been an evolving focus to enhance efficacy, durability, and toxicity profiles of immunotherapy. Although immune checkpoint inhibitors have revolutionized cancer treatment with many already-approved antibodies and several others in the pipeline, bispecific antibodies build on their success in an attempt to deliver an even more potent immune response against tumor cells. On the other hand, vaccines comprise the oldest and most versatile form of immunotherapy. Peptide and nucleic acid vaccines are relatively simple to manufacture compared with oncolytic virus-based vaccines, whereas the dendritic cell vaccines are the most complex, requiring autologous cell culture. Nevertheless, a crucial question in the development of cancer vaccines is the choice of antigen whereby shared and patient-private antigen approaches are currently being pursued. There is hope that cancer vaccines will join the repertoire of successful novel immunotherapeutics in the market. Better insights into the impact of immunotherapy on effector T cells and other immune cell populations in the TME shall be a major priority across the immune-oncology discipline and can help identify predictive biomarkers to evaluate response to treatment and identify patients who would most likely benefit from immunotherapy.


Subject(s)
Cancer Vaccines , Neoplasms , Humans , Cancer Vaccines/therapeutic use , Immunotherapy/methods , Medical Oncology , T-Lymphocytes , Immunity , Tumor Microenvironment
10.
Cell Rep Methods ; 3(4): 100459, 2023 04 24.
Article in English | MEDLINE | ID: mdl-37159666

ABSTRACT

T cell receptor (TCR) technologies, including repertoire analyses and T cell engineering, are increasingly important in the clinical management of cellular immunity in cancer, transplantation, and other immune diseases. However, sensitive and reliable methods for repertoire analyses and TCR cloning are still lacking. Here, we report on SEQTR, a high-throughput approach to analyze human and mouse repertoires that is more sensitive, reproducible, and accurate as compared with commonly used assays, and thus more reliably captures the complexity of blood and tumor TCR repertoires. We also present a TCR cloning strategy to specifically amplify TCRs from T cell populations. Positioned downstream of single-cell or bulk TCR sequencing, it allows time- and cost-effective discovery, cloning, screening, and engineering of tumor-specific TCRs. Together, these methods will accelerate TCR repertoire analyses in discovery, translational, and clinical settings and permit fast TCR engineering for cellular therapies.


Subject(s)
Neoplasms , Receptors, Antigen, T-Cell , Humans , Animals , Mice , Receptors, Antigen, T-Cell/genetics , Neoplasms/genetics , Biological Assay , Cell Engineering , Cloning, Molecular
11.
iScience ; 26(4): 106288, 2023 Apr 21.
Article in English | MEDLINE | ID: mdl-36950115

ABSTRACT

Antigen selection and prioritization represent crucial determinants of vaccines' efficacy. Here, we compare two personalized dendritic cell-based vaccination strategies using whole-tumor lysate or neoantigens. Data in mouse and in cancer patients demonstrate that peptide vaccines using neoantigens predicted on the sole basis of in silico peptide-major histocompatibility complex (MHC) binding affinity underperform relative to whole-tumor-lysate vaccines. In contrast, effective in vitro peptide-MHC binding affinity and peptide immunogenicity significantly improve the prioritization of tumor-rejecting neoepitopes and result in more efficacious vaccines.

12.
Front Immunol ; 14: 1119371, 2023.
Article in English | MEDLINE | ID: mdl-36845155

ABSTRACT

Background: The use of circulating cDC1 to generate anti-cancer vaccines is among the most promising approaches to overcome the limited immunogenicity and clinical efficacy of monocyte-derived DC. However, the recurrent lymphopenia and the reduction of DC numbers and functionality in patients with cancer may represent an important limitation of such approach. In patients with ovarian cancer (OvC) that had received chemotherapy, we previously showed that cDC1 frequency and function were reduced. Methods: We recruited healthy donors (HD, n=7) and patients with OvC at diagnosis and undergoing interval debulking surgery (IDS, n=6), primary debulking surgery (PDS, n=6) or at relapse (n=8). We characterized longitudinally phenotypic and functional properties of peripheral DC subsets by multiparametric flow cytometry. Results: We show that the frequency of cDC1 and the total CD141+ DC capacity to take up antigen are not reduced at the diagnosis, while their TLR3 responsiveness is partially impaired in comparison with HD. Chemotherapy causes cDC1 depletion and increase in cDC2 frequency, but mainly in patients belonging to the PDS group, while in the IDS group both total lymphocytes and cDC1 are preserved. The capacity of total CD141+ DC and cDC2 to take up antigen is not impacted by chemotherapy, while the activation capacity upon Poly(I:C) (TLR3L) stimulation is further decreased. Conclusions: Our study provides new information about the impact of chemotherapy on the immune system of patients with OvC and sheds a new light on the importance of considering timing with respect to chemotherapy when designing new vaccination strategies that aim at withdrawing or targeting specific DC subsets.


Subject(s)
Dendritic Cells , Neoplasm Recurrence, Local , Ovarian Neoplasms , Female , Humans , Immunotherapy , Monocytes , Ovarian Neoplasms/drug therapy , Dendritic Cells/immunology
13.
Nat Rev Cancer ; 22(11): 640-656, 2022 11.
Article in English | MEDLINE | ID: mdl-36109621

ABSTRACT

Treatment of high-grade serous ovarian cancer (HGSOC) remains challenging. Although HGSOC can potentially be responsive to immunotherapy owing to endogenous immunity at the molecular or T cell level, immunotherapy for this disease has fallen short of expectations to date. This Review proposes a working classification for HGSOC based on the presence or absence of intraepithelial T cells, and elaborates the putative mechanisms that give rise to such immunophenotypes. These differences might explain the failures of existing immunotherapies, and suggest that rational therapeutic approaches tailored to each immunophenotype might meet with improved success. In T cell-inflamed tumours, treatment could focus on mobilizing pre-existing immunity and strengthening the activation of T cells embedded in intraepithelial tumour myeloid niches. Conversely, in immune-excluded and immune-desert tumours, treatment could focus on restoring inflammation by reprogramming myeloid cells, stromal cells and vascular epithelial cells. Poly(ADP-ribose) polymerase (PARP) inhibitors, low-dose radiotherapy, epigenetic drugs and anti-angiogenesis therapy are among the tools available to restore T cell infiltration in HGSOC tumours and could be implemented in combination with vaccines and redirected T cells.


Subject(s)
Cystadenocarcinoma, Serous , Ovarian Neoplasms , Poly(ADP-ribose) Polymerase Inhibitors , Female , Humans , Cystadenocarcinoma, Serous/drug therapy , Cystadenocarcinoma, Serous/pathology , Immunotherapy , Ovarian Neoplasms/therapy , Ovarian Neoplasms/genetics , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Poly(ADP-ribose) Polymerase Inhibitors/therapeutic use
14.
Cancer Treat Rev ; 106: 102383, 2022 May.
Article in English | MEDLINE | ID: mdl-35367804

ABSTRACT

Due to the intrinsic genetic instability of tumor cells, aberrant and novel tumor antigens can be expressed and serve as potential targets for cancer immunotherapy. This intrinsic feature can be exploited by cancer immunotherapy, particularly with cancer vaccination. Personalized cancer vaccination strategy can be a potent approach to trigger a broad-based antitumor response that is both beneficial and relevant to individual cancer patients. Also, cancer vaccination strategy can be designed to help elicit immunological memory for long-lasting tumor control. In this review, we describe the different types of personalized cancer vaccines and summarize the completed and ongoing cancer vaccination clinical trials in the last 10 years (database from www.clinicaltrials.gov). We also discuss the pros and cons of using different tumor animal models, i.e. syngeneic models, patient-derived xenografts models and genetically engineered mouse models, as tools for investigating cancer vaccination strategies. Finally, we describe preclinical studies that seek to test new emerging vaccination strategies as well as improving existing methods.


Subject(s)
Cancer Vaccines , Neoplasms , Animals , Antigens, Neoplasm , Cancer Vaccines/therapeutic use , Humans , Immunotherapy/methods , Mice , Neoplasms/drug therapy , Vaccination
15.
Bioimpacts ; 12(1): 65-86, 2022.
Article in English | MEDLINE | ID: mdl-35087718

ABSTRACT

Introduction: Tumor endothelial marker 1 (TEM1) is expressed by tumor vascular endothelial cells in various cancers. Methods: Here, we developed poly(lactic-co-glycolic acid) (PLGA) nanoparticles (NPs) PEGylated with polyethylene glycol (PEG) and functionalized with anti-TEM1 antibody fragment (78Fc) and loaded them with necroptosis-inducing agent shikonin (SHK) (78Fc-PLGA-SHK NPs). Results: The nanoformulation showed a smooth spherical shape (~120 nm; the ζ potential of -30 mV) with high drug entrapment and bioconjugation efficiencies (~92% and ~90%, respectively) and a sustained-release profile in serum. Having significant toxicity in vitro (e.g., MS1 and TC1 cells), the nanoformulation dramatically increased the cytotoxicity in the TC1 murine lung carcinoma subcutaneous and intravenous/metastatic models as aggressive tumor models. The injection of the 78Fc-PLGA-SHK NPs to the MS1-xenograft mice resulted in significantly higher accumulation and effects in the TEM1-positive tumor targets, while they were excreted via urine track without retaining in the liver/spleen. In the TC1 subcutaneous model, C57/BL6 mice treated with the 78Fc-PLGA-SHK NPs revealed a significant therapeutic effect. The mice, which were tumor-free after receiving the nanoformulation, were re-challenged with the TC1 cells to investigate the immune response. These animals became tumor-free a week after the injection of TC1 cells. Conclusion: Based on these findings, we propose the 78Fc-PLGA-SHK NPs as a highly effective immunostimulating nanomedicine against the TEM1-expressing cells for targeted therapy of solid tumors including ovarian cancer.

16.
Cancer Discov ; 12(1): 108-133, 2022 01.
Article in English | MEDLINE | ID: mdl-34479871

ABSTRACT

Developing strategies to inflame tumors is critical for increasing response to immunotherapy. Here, we report that low-dose radiotherapy (LDRT) of murine tumors promotes T-cell infiltration and enables responsiveness to combinatorial immunotherapy in an IFN-dependent manner. Treatment efficacy relied upon mobilizing both adaptive and innate immunity and depended on both cytotoxic CD4+ and CD8+ T cells. LDRT elicited predominantly CD4+ cells with features of exhausted effector cytotoxic cells, with a subset expressing NKG2D and exhibiting proliferative capacity, as well as a unique subset of activated dendritic cells expressing the NKG2D ligand RAE1. We translated these findings to a phase I clinical trial administering LDRT, low-dose cyclophosphamide, and immune checkpoint blockade to patients with immune-desert tumors. In responsive patients, the combinatorial treatment triggered T-cell infiltration, predominantly of CD4+ cells with Th1 signatures. Our data support the rational combination of LDRT with immunotherapy for effectively treating low T cell-infiltrated tumors. SIGNIFICANCE: Low-dose radiation reprogrammed the tumor microenvironment of tumors with scarce immune infiltration and together with immunotherapy induced simultaneous mobilization of innate and adaptive immunity, predominantly CD4+ effector T cells, to achieve tumor control dependent on NKG2D. The combination induced important responses in patients with metastatic immune-cold tumors.This article is highlighted in the In This Issue feature, p. 1.


Subject(s)
Adenocarcinoma, Papillary/radiotherapy , Ovarian Neoplasms/radiotherapy , Adaptive Immunity , Adenocarcinoma, Papillary/immunology , Animals , CD4-Positive T-Lymphocytes , CD8-Positive T-Lymphocytes , Disease Models, Animal , Female , Humans , Lymphocytes, Tumor-Infiltrating , Mice , Mice, Inbred C57BL , Ovarian Neoplasms/immunology , Radiotherapy Dosage , Tumor Microenvironment
17.
Nat Biotechnol ; 40(5): 656-660, 2022 05.
Article in English | MEDLINE | ID: mdl-34782741

ABSTRACT

The identification of patient-specific tumor antigens is complicated by the low frequency of T cells specific for each tumor antigen. Here we describe NeoScreen, a method that enables the sensitive identification of rare tumor (neo)antigens and of cognate T cell receptors (TCRs) expressed by tumor-infiltrating lymphocytes. T cells transduced with tumor antigen-specific TCRs identified by NeoScreen mediate regression of established tumors in patient-derived xenograft mice.


Subject(s)
Neoplasms , Receptors, Antigen, T-Cell , Animals , Antigens, Neoplasm/genetics , CD8-Positive T-Lymphocytes , Humans , Lymphocytes, Tumor-Infiltrating , Mice , Neoplasms/genetics , Neoplasms/therapy , Receptors, Antigen, T-Cell/genetics , T-Lymphocytes
18.
Macromol Biosci ; 22(2): e2100356, 2022 02.
Article in English | MEDLINE | ID: mdl-34822219

ABSTRACT

Cancer vaccination is a powerful strategy to combat cancer. A very attractive approach to prime the immune system against cancer cells involves the use of tumor lysate as antigen source. The immunogenicity of tumor lysate can be further enhanced by treatment with hypochlorous acid. This study explores poly(lactic-co-glycolic acid) (PLGA) nanoparticles to enhance the delivery of oxidized tumor lysate to dendritic cells. Using human donor-derived dendritic cells, it is found that the use of PLGA nanoparticles enhances antigen uptake and dendritic cell maturation, as compared to the use of the free tumor lysate. The ability of the activated dendritic cells to stimulate autologous peripheral blood mononuclear cells (PBMCs) is assessed in vitro by coculturing PBMCs with A375 melanoma cells. Live cell imaging analysis of this experiment highlights the potential of nanoparticle-mediated dendritic-cell-based vaccination approaches. Finally, the efficacy of the PLGA nanoparticle formulation is evaluated in vivo in a therapeutic vaccination study using B16F10 tumor-bearing C57BL/6J mice. Animals that are challenged with the polymer nanoparticle-based oxidized tumor lysate formulation survive for up to 50 days, in contrast to a maximum of 41 days for the group that receives the corresponding free oxidized tumor lysate-based vaccine.


Subject(s)
Cancer Vaccines , Nanoparticles , Neoplasms , Animals , Dendritic Cells , Leukocytes, Mononuclear , Mice , Mice, Inbred C57BL , Neoplasms/therapy , Polyglycolic Acid/pharmacology , Polylactic Acid-Polyglycolic Acid Copolymer
19.
Cancers (Basel) ; 15(1)2022 Dec 21.
Article in English | MEDLINE | ID: mdl-36612030

ABSTRACT

Combined ipilimumab and nivolumab significantly improve outcomes in metastatic melanoma patients but bear an important financial impact on the healthcare system. Here, we analyze the treatment costs, focusing on irAE. We conducted a retrospective analysis of 62 melanoma patients treated with ipilimumab-nivolumab at the Lausanne University Hospital between 1 June 2016 and 31 August 2019. The frequency of irAEs and outcomes were evaluated. All melanoma-specific costs were analyzed from the first ipilimumab-nivolumab dose until the therapy given subsequently or death. A total of 54/62 (87%) patients presented at least one irAE, and 31/62 (50%) presented a grade 3-4 irAE. The majority of patients who had a complete response 12/14 (86%) and 21/28 (75%) of overall responders presented a grade 3-4 toxicity, and there were no responses in patients without toxicity. Toxicity costs represented only 3% of the total expenses per patient. The most significant contributions were medication costs (44%) and disease costs (39%), mainly disease-related hospitalization costs, not toxicity-related. Patients with a complete response had the lowest global median cost per week of follow up (EUR 2425) and patients who had progressive disease (PD), the highest one (EUR 8325). Except for one patient who had a Grade 5 toxicity (EUR 6043/week), we observe that less severe toxicity grades (EUR 9383/week for Grade 1), or even the absence of toxicity (EUR 9922/week), are associated with higher median costs per week (vs. EUR 3266/week for Grade 4 and EUR 2850/week for Grade 3). The cost of toxicities was unexpectedly low compared to the total costs, especially medication costs. Patients with higher toxicity grades had better outcomes and lower total costs due to treatment discontinuation.

20.
Cancers (Basel) ; 13(22)2021 Nov 18.
Article in English | MEDLINE | ID: mdl-34830955

ABSTRACT

Endometrial cancer (EC) is a common gynecological malignancy and the fourth most common malignancy in European and North American women. Amongst EC, the advanced serous, p53-mutated, and pMMR subtypes have the highest risk of relapse despite optimal standard of care therapy. At present, there is no standard of care maintenance treatment to prevent relapse among these high-risk patients. Vaccines are a form of immunotherapy that can potentially increase the immunogenicity of pMMR, serous, and p53-mutated tumors to render them responsive to check point inhibitor-based immunotherapy. We demonstrate, for the first time, the feasibility of generating a personalized dendritic cell vaccine pulsed with peptide neoantigens in a patient with pMMR, p53-mutated, and serous endometrial adenocarcinoma (SEC). The personalized vaccine was administered in combination with systemic chemotherapy to treat an inoperable metastatic recurrence. This treatment association demonstrated the safety and immunogenicity of the personalized dendritic cell vaccine. Interestingly, a complete oncological response was obtained with respect to both radiological assessment and the tumor marker CA-125.

SELECTION OF CITATIONS
SEARCH DETAIL
...