Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Death Differ ; 16(6): 858-68, 2009 Jun.
Article in English | MEDLINE | ID: mdl-19229243

ABSTRACT

RNA interference (RNAi) is used as a reverse-genetic tool to examine functions of a gene in different cellular processes including apoptosis. As key cellular proteins are inactivated during apoptosis, and as RNAi requires cooperation of many cellular proteins, we examined whether DNA vector-based RNAi would continue to function during apoptosis. The short hairpin RNA transcribed from the DNA vector is processed by Dicer-1 to form small interfering RNA that is incorporated in the RNA-induced silencing complex (RISC) to guide a sequence-specific silencing of the target mRNA. We report here that DNA vector-based RNAi of three different genes, namely poly(ADP-ribose) polymerase-1, p14(ARF) and lamin A/C are abrogated during apoptosis. The failure of DNA vector-based RNAi was not at the level of Ago-2 or RISC-mediated step of RNAi but due to catalytic inactivation of Dicer-1 on specific cleavage at the STTD(1476) and CGVD(1538) sites within its RNase IIIa domain. Using multiple approaches, caspase-3 was identified as the major caspase responsible for the cleavage and inactivation of Dicer-1. As Dicer-1 is also the common endonuclease required for formation of microRNA (miRNA) in mammalian cells, we observed decreased levels of mature forms of miR-16, miR-21 and let-7a. Our results suggest a role for apoptotic cleavage and inactivation of Dicer-1 in controlling apoptotic events through altered availability of miRNA.


Subject(s)
Apoptosis , Caspase 3/metabolism , DEAD-box RNA Helicases/metabolism , RNA Interference , Ribonuclease III/metabolism , Amino Acid Sequence , Cell Line , Fibroblasts/metabolism , Gene Knockdown Techniques , Genetic Vectors/genetics , HeLa Cells , Humans , Lamin Type A/deficiency , Lamin Type A/metabolism , MicroRNAs/metabolism , Poly (ADP-Ribose) Polymerase-1 , Poly(ADP-ribose) Polymerases/deficiency , Poly(ADP-ribose) Polymerases/metabolism , RNA, Small Interfering/metabolism , RNA-Induced Silencing Complex/metabolism , Tumor Suppressor Protein p14ARF/deficiency , Tumor Suppressor Protein p14ARF/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...