Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
PeerJ Comput Sci ; 8: e953, 2022.
Article in English | MEDLINE | ID: mdl-35721408

ABSTRACT

Deepfake (DF) is a kind of forged image or video that is developed to spread misinformation and facilitate vulnerabilities to privacy hacking and truth masking with advanced technologies, including deep learning and artificial intelligence with trained algorithms. This kind of multimedia manipulation, such as changing facial expressions or speech, can be used for a variety of purposes to spread misinformation or exploitation. This kind of multimedia manipulation, such as changing facial expressions or speech, can be used for a variety of purposes to spread misinformation or exploitation. With the recent advancement of generative adversarial networks (GANs) in deep learning models, DF has become an essential part of social media. To detect forged video and images, numerous methods have been developed, and those methods are focused on a particular domain and obsolete in the case of new attacks/threats. Hence, a novel method needs to be developed to tackle new attacks. The method introduced in this article can detect various types of spoofs of images and videos that are computationally generated using deep learning models, such as variants of long short-term memory and convolutional neural networks. The first phase of this proposed work extracts the feature frames from the forged video/image using a sparse autoencoder with a graph long short-term memory (SAE-GLSTM) method at training time. The first phase of this proposed work extracts the feature frames from the forged video/image using a sparse autoencoder with a graph long short-term memory (SAE-GLSTM) method at training time. The proposed DF detection model is tested using the FFHQ database, 100K-Faces, Celeb-DF (V2) and WildDeepfake. The evaluated results show the effectiveness of the proposed method.

2.
Sensors (Basel) ; 21(22)2021 Nov 15.
Article in English | MEDLINE | ID: mdl-34833656

ABSTRACT

The current population worldwide extensively uses social media to share thoughts, societal issues, and personal concerns. Social media can be viewed as an intelligent platform that can be augmented with a capability to analyze and predict various issues such as business needs, environmental needs, election trends (polls), governmental needs, etc. This has motivated us to initiate a comprehensive search of the COVID-19 pandemic-related views and opinions amongst the population on Twitter. The basic training data have been collected from Twitter posts. On this basis, we have developed research involving ensemble deep learning techniques to reach a better prediction of the future evolutions of views in Twitter when compared to previous works that do the same. First, feature extraction is performed through an N-gram stacked autoencoder supervised learning algorithm. The extracted features are then involved in a classification and prediction involving an ensemble fusion scheme of selected machine learning techniques such as decision tree (DT), support vector machine (SVM), random forest (RF), and K-nearest neighbour (KNN). all individual results are combined/fused for a better prediction by using both mean and mode techniques. Our proposed scheme of an N-gram stacked encoder integrated in an ensemble machine learning scheme outperforms all the other existing competing techniques such unigram autoencoder, bigram autoencoder, etc. Our experimental results have been obtained from a comprehensive evaluation involving a dataset extracted from open-source data available from Twitter that were filtered by using the keywords "covid", "covid19", "coronavirus", "covid-19", "sarscov2", and "covid_19".


Subject(s)
COVID-19 , Social Media , Humans , Machine Learning , Pandemics , SARS-CoV-2 , Social Networking
SELECTION OF CITATIONS
SEARCH DETAIL
...