Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Curr Res Struct Biol ; 8: 100152, 2024.
Article in English | MEDLINE | ID: mdl-38989133

ABSTRACT

Sortase proteins play a crucial role as integral membrane proteins in anchoring bacterial surface proteins by recognizing them through a Cell-Wall Sorting (CWS) motif and cleaving them at specific sites before initiating pilus assembly. Both sortases and their substrate proteins are major virulence factors in numerous Gram-positive pathogens, making them attractive targets for antimicrobial intervention. Recognizing the significance of virulence proteins, a comprehensive exploration of their structural and functional characteristics is essential to enhance our understanding of pilus assembly in diverse Gram-positive bacteria. Therefore, this review article discusses the structural features of different classes of sortases and pilin proteins, primarily serving as substrates for sortase-assembled pili. Moreover, it thoroughly examines the molecular-level interactions between sortases and their inhibitors, providing insights from both structural and functional perspectives. In essence, this review article will provide a contemporary and complete understanding of both sortase pathways and various strategies to target them effectively to counteract the virulence.

2.
Curr Res Microb Sci ; 6: 100231, 2024.
Article in English | MEDLINE | ID: mdl-38510214

ABSTRACT

Biomedical implants are crucial in providing support and functionality to patients with missing or defective body parts. However, implants carry an inherent risk of bacterial infections that are biofilm-associated and lead to significant complications. These infections often result in implant failure, requiring replacement by surgical restoration. Given these complications, it is crucial to study the biofilm formation mechanism on various biomedical implants that will help prevent implant failures. Therefore, this comprehensive review explores various types of implants (e.g., dental implant, orthopedic implant, tracheal stent, breast implant, central venous catheter, cochlear implant, urinary catheter, intraocular lens, and heart valve) and medical devices (hemodialyzer and pacemaker) in use. In addition, the mechanism of biofilm formation on those implants, and their pathogenesis were discussed. Furthermore, this article critically reviews various approaches in combating implant-associated infections, with a special emphasis on novel non-antibiotic alternatives to mitigate biofilm infections.

3.
Arch Microbiol ; 204(12): 710, 2022 Nov 16.
Article in English | MEDLINE | ID: mdl-36383258

ABSTRACT

Escherichia coli (E. coli) and Enterococcus faecalis (E. faecalis) are pathogenic strains that often coexist in intestinal flora of humans and are prone to cause biofilm-associated infections, such as gastrointestinal tract and urinary tract infections. Earlier studies have demonstrated that E. faecalis biofilm can metabolize ferrous ions in iron-rich environments and promote biofilm growth under in-vivo conditions. However, the influence of iron transporters on dual-species biofilm growth and the nature of molecular-level interactions between iron transporter proteins and Fe2+ remains unknown. Therefore, in this work, co-culture studies were performed and the study indicates that Fe2+ at concentrations of 50-150 µM promotes the colonization of E. coli, and Fe2+ concentrations of 50-200 µM promote the growth of E. faecalis and dual-species colonies. Atomic absorption spectroscopy results reveal that Fe2+ ion augmentation in bacterial cells was increased to 4 folds in the single-species model and 11 folds in the dual-species model under iron-supplemented conditions. Furthermore, Fe2+ augmentation increased the antibiotic resistance of E. faecalis in both single- and dual-species bacterial cultures. In addition, in-silico docking were performed to determine a three-dimensional (3D) structure of ferrous iron-transporter proteins FeoB of E. faecalis and its affinity to extracellular Fe2+. Our model suggests that the FeoB facilitates the Fe2+ uptake in E. faecalis cells in the absence of iron chelator, 2,2-bipyridyl.


Subject(s)
Enterococcus faecalis , Urinary Tract Infections , Humans , Escherichia coli/metabolism , Biofilms , Urinary Tract Infections/microbiology , Iron/metabolism , Carrier Proteins/metabolism
4.
Cell Surf ; 8: 100077, 2022 Dec.
Article in English | MEDLINE | ID: mdl-35493982

ABSTRACT

The surface of Gram-positive and Gram-negative bacteria contains long hair-like proteinaceous protrusion known as pili or fimbriae. Historically, pilin proteins were considered to play a major role in the transfer of genetic material during bacterial conjugation. Recent findings however elucidate their importance in virulence, biofilm formation, phage transduction, and motility. Therefore, it is crucial to gain mechanistic insights on the subcellular assembly of pili and the localization patterns of their subunit proteins (major and minor pilins) that aid the macromolecular pilus assembly at the bacterial surface. In this article, we review the current knowledge of pilus assembly mechanisms in a wide range of Gram-positive and Gram-negative bacteria, including subcellular localization patterns of a few pilin subunit proteins and their role in virulence and pathogenesis.

5.
Cell Surf ; 8: 100075, 2022 Dec.
Article in English | MEDLINE | ID: mdl-35198842

ABSTRACT

Gram-positive and Gram-negative bacterial pathogens are commonly found in Urinary Tract Infection (UTI), particularly infected in females like pregnant women, elder people, sexually active, or individuals prone to other risk factors for UTI. In this article, we review the expression of virulence surface proteins and their interaction with host cells for the most frequently isolated uropathogens: Escherichia coli, Enterococcus faecalis, Proteus mirabilis, Klebsiella pneumoniae, and Staphylococcus saprophyticus. In addition to the host cell interaction, surface protein regulation was also discussed in this article. The surface protein regulation serves as a key tool in differentiating the pathogen isotypes. Furthermore, it might provide insights on novel diagnostic methods to detect uropathogen that are otherwise easily overlooked due to limited culture-based assays. In essence, this review shall provide an in-depth understanding on secretion of virulence factors of various uropathogens and their role in host-pathogen interaction, this knowledge might be useful in the development of therapeutics against uropathogens.

6.
Proc Natl Acad Sci U S A ; 110(50): 20230-5, 2013 Dec 10.
Article in English | MEDLINE | ID: mdl-24191013

ABSTRACT

Virulence factor secretion and assembly occurs at spatially restricted foci in some Gram-positive bacteria. Given the essentiality of the general secretion pathway in bacteria and the contribution of virulence factors to disease progression, the foci that coordinate these processes are attractive antimicrobial targets. In this study, we show in Enterococcus faecalis that SecA and Sortase A, required for the attachment of virulence factors to the cell wall, localize to discrete domains near the septum or nascent septal site as the bacteria proceed through the cell cycle. We also demonstrate that cationic human ß-defensins interact with E. faecalis at discrete septal foci, and this exposure disrupts sites of localized secretion and sorting. Modification of anionic lipids by multiple peptide resistance factor, a protein that confers antimicrobial peptide resistance by electrostatic repulsion, renders E. faecalis more resistant to killing by defensins and less susceptible to focal targeting by the cationic antimicrobial peptides. These data suggest a paradigm in which focal targeting by antimicrobial peptides is linked to their killing efficiency and to disruption of virulence factor assembly.


Subject(s)
Adenosine Triphosphatases/metabolism , Aminoacyltransferases/metabolism , Bacterial Proteins/metabolism , Cysteine Endopeptidases/metabolism , Enterococcus faecalis/metabolism , Membrane Transport Proteins/metabolism , Virulence Factors/biosynthesis , beta-Defensins/metabolism , DNA Primers/genetics , Fluorescent Antibody Technique , Humans , SEC Translocation Channels , SecA Proteins
7.
Anal Chem ; 83(24): 9579-85, 2011 Dec 15.
Article in English | MEDLINE | ID: mdl-22035423

ABSTRACT

This paper presents a poly(dimethyl siloxane) (PDMS) polymer microfluidic device using alternating current (ac) dielectrophoresis (DEP) for separating live cells from interfering particles of similar sizes by their polarizabilities under continuous flow and for characterizing DEP behaviors of cells in stagnant flow. The ac-DEP force is generated by three-dimensional (3D) conducting PDMS composite electrodes fabricated on a sidewall of the device main channel. Such 3D PDMS composite electrodes are made by dispersing microsized silver (Ag) fillers into PDMS gel. The sidewall AgPDMS electrodes can generate a 3D electric field that uniformly distributes throughout the channel height and varies along the channel lateral direction, thereby producing stronger lateral DEP effects over the entire channel. This allows not only easy observation of cell/particle lateral motion but also using the lateral DEP force for manipulation of cells/particles. The former feature is used to characterize the frequency-dependent DEP behaviors of Saccharomyces cerevisiae (yeast) and Escherichia coli (bacteria). The latter is utilized for continuous separation of live yeast and bacterial cells from similar-size latex particles as well as live yeast cells from dead yeast cells. The separation efficiency of 97% is achieved in all cases. The demonstration of these functions shows promising applications of the microfluidic device.


Subject(s)
Dimethylpolysiloxanes/chemistry , Electrophoresis , Escherichia coli/isolation & purification , Microfluidic Analytical Techniques , Saccharomyces cerevisiae/isolation & purification , Electrodes , Microspheres , Silver/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...