Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Anesth Analg ; 2024 Jan 30.
Article in English | MEDLINE | ID: mdl-38289856

ABSTRACT

BACKGROUND: Human consciousness is generally thought to emerge from the activity of intrinsic connectivity networks (resting-state networks [RSNs]) of the brain, which have topological characteristics including, among others, graph strength and efficiency. So far, most functional brain imaging studies in anesthetized subjects have compared wakefulness and unresponsiveness, a state considered as corresponding to unconsciousness. Sedation and general anesthesia not only produce unconsciousness but also phenomenological states of preserved mental content and perception of the environment (connected consciousness), and preserved mental content but no perception of the environment (disconnected consciousness). Unresponsiveness may be seen during unconsciousness, but also during disconnectedness. Deep dexmedetomidine sedation is frequently a state of disconnected consciousness. In this study, we were interested in characterizing the RSN topology changes across 4 different and steady-state levels of dexmedetomidine-induced alteration of consciousness, namely baseline (Awake, drug-free state), Mild sedation (drowsy, still responding), Deep sedation (unresponsive), and Recovery, with a focus on changes occurring between a connected consciousness state and an unresponsiveness state. METHODS: A functional magnetic resonance imaging database acquired in 14 healthy volunteers receiving dexmedetomidine sedation was analyzed using a method combining independent component analysis and graph theory, specifically looking at changes in connectivity strength and efficiency occurring during the 4 above-mentioned dexmedetomidine-induced altered consciousness states. RESULTS: Dexmedetomidine sedation preserves RSN architecture. Unresponsiveness during dexmedetomidine sedation is mainly characterized by a between-networks graph strength alteration and within-network efficiency alteration of lower-order sensory RSNs, while graph strength and efficiency in higher-order RSNs are relatively preserved. CONCLUSIONS: The differential dexmedetomidine-induced RSN topological changes evidenced in this study may be the signature of inadequate processing of sensory information by lower-order RSNs, and of altered communication between lower-order and higher-order networks, while the latter remain functional. If replicated in an experimental paradigm distinguishing, in unresponsive subjects, disconnected consciousness from unconsciousness, such changes would sustain the hypothesis that disconnected consciousness arises from altered information handling by lower-order sensory networks and altered communication between lower-order and higher-order networks, while the preservation of higher-order networks functioning allows for an internally generated mental content (or dream).

2.
Brain Commun ; 5(1): fcad018, 2023.
Article in English | MEDLINE | ID: mdl-36819938

ABSTRACT

There exist no objective markers for tinnitus or tinnitus disorders, which complicates diagnosis and treatments. The combination of EEG with sophisticated classification procedures may reveal biomarkers that can identify tinnitus and accurately differentiate different levels of distress experienced by patients. EEG recordings were obtained from 129 tinnitus patients and 142 healthy controls. Linear support vector machines were used to develop two classifiers: the first differentiated tinnitus patients from controls, while the second differentiated tinnitus patients with low and high distress levels. The classifier for healthy controls and tinnitus patients performed with an average accuracy of 96 and 94% for the training and test sets, respectively. For the distress classifier, these average accuracies were 89 and 84%. Minimal overlap was observed between the features of the two classifiers. EEG-derived features made it possible to accurately differentiate healthy controls and tinnitus patients as well as low and high distress tinnitus patients. The minimal overlap between the features of the two classifiers indicates that the source of distress in tinnitus, which could also be involved in distress related to other conditions, stems from different neuronal mechanisms compared to those causing the tinnitus pathology itself.

3.
Neuroimage ; 223: 117367, 2020 12.
Article in English | MEDLINE | ID: mdl-32931944

ABSTRACT

Propofol is a short-acting medication that results in decreased levels of consciousness and is used for general anesthesia. Although it is the most commonly used anesthetic in the world, much remains unknown about the mechanisms by which it induces a loss of consciousness. Characterizing anesthesia-induced alterations to brain network activity might provide a powerful framework for understanding the neural mechanisms of unconsciousness. The aim of this work was to model brain activity in healthy brains during various stages of consciousness, as induced by propofol, in the auditory paradigm. We used the generalized Ising model (GIM) to fit the empirical fMRI data of healthy subjects while they listened to an audio clip from a movie. The external stimulus (audio clip) is believed to be at least partially driving a synchronization process of the brain activity and provides a similar conscious experience in different subjects. In order to observe the common synchronization among the subjects, a novel technique called the inter subject correlation (ISC) was implemented. We showed that the GIM-modified to incorporate the naturalistic external field-was able to fit the empirical task fMRI data in the awake state, in mild sedation, in deep sedation, and in recovery, at a temperature T* which is well above the critical temperature. To our knowledge this is the first study that captures human brain activity in response to real-life external stimuli at different levels of conscious awareness using mathematical modeling. This study might be helpful in the future to assess the level of consciousness of patients with disorders of consciousness and help in regaining their consciousness.


Subject(s)
Auditory Perception/physiology , Brain/physiology , Consciousness/physiology , Models, Neurological , Acoustic Stimulation , Adult , Anesthetics, Intravenous/administration & dosage , Auditory Perception/drug effects , Brain/drug effects , Brain Mapping , Consciousness/drug effects , Female , Humans , Magnetic Resonance Imaging , Male , Propofol/administration & dosage , Young Adult
4.
J Neurol ; 266(9): 2197-2207, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31152296

ABSTRACT

Tinnitus, the perception of sound in the absence of external stimuli, is often a disturbing symptom for which the underlying functional neuroanatomy still remains poorly understood. Most studies have focused solely on functional connectivity changes in the auditory cortex of tinnitus patients. The aim of this study was to investigate whether a correlation exists between tinnitus behavioural scores and functional brain connectivity of five resting-state networks comprising the auditory, the default mode, the external control left and right, and the salience network. For this purpose, a large sample of one hundred and thirty-five subjects underwent resting-state functional magnetic resonance imaging and their behavioural scores were obtained using clinical evaluations. Networks were extracted using independent component analysis, and functional connectivity patterns in the extracted networks were evaluated by a graph theoretical approach. The effects of tinnitus for each network were investigated by correlating the graph strength of all the regions with the tinnitus behavioural scores using stepwise fit regression analysis. Results indicated that alterations of functional interactions between key neural circuits of the brain are not limited to one single network. In particular, tinnitus distress showed a strong correlation with the connectivity pattern within and between the right executive control network and the other four resting-state networks, indicating that tinnitus distress is probably the consequence of a hyperactive attention condition. Among the behavioural scores, the strongest correlation was observed between age and hearing loss, while the tinnitus objective loudness was not correlated with any behavioural scores.


Subject(s)
Acoustic Stimulation/methods , Attention/physiology , Brain/diagnostic imaging , Nerve Net/diagnostic imaging , Tinnitus/diagnostic imaging , Adult , Aged , Female , Hearing Tests/methods , Humans , Magnetic Resonance Imaging/methods , Male , Middle Aged , Prospective Studies , Tinnitus/physiopathology
5.
Front Neurol ; 9: 861, 2018.
Article in English | MEDLINE | ID: mdl-30405513

ABSTRACT

Behavioral assessments could not suffice to provide accurate diagnostic information in individuals with disorders of consciousness (DoC). Multimodal neuroimaging markers have been developed to support clinical assessments of these patients. Here we present findings obtained by hybrid fludeoxyglucose (FDG-)PET/MR imaging in three severely brain-injured patients, one in an unresponsive wakefulness syndrome (UWS), one in a minimally conscious state (MCS), and one patient emerged from MCS (EMCS). Repeated behavioral assessment by means of Coma Recovery Scale-Revised and neurophysiological evaluation were performed in the two weeks before and after neuroimaging acquisition, to ascertain that clinical diagnosis was stable. The three patients underwent one imaging session, during which two resting-state fMRI (rs-fMRI) blocks were run with a temporal gap of about 30 min. rs-fMRI data were analyzed with a graph theory approach applied to nine independent networks. We also analyzed the benefits of concatenating the two acquisitions for each patient or to select for each network the graph strength map with a higher ratio of fitness. Finally, as for clinical assessment, we considered the best functional connectivity pattern for each network and correlated graph strength maps to FDG uptake. Functional connectivity analysis showed several differences between the two rs-fMRI acquisitions, affecting in a different way each network and with a different variability for the three patients, as assessed by ratio of fitness. Moreover, combined PET/fMRI analysis demonstrated a higher functional/metabolic correlation for patients in EMCS and MCS compared to UWS. In conclusion, we observed for the first time, through a test-retest approach, a variability in the appearance and temporal/spatial patterns of resting-state networks in severely brain-injured patients, proposing a new method to select the most informative connectivity pattern.

SELECTION OF CITATIONS
SEARCH DETAIL
...