Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
J Cogn Neurosci ; : 1-20, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38940724

ABSTRACT

Visual working memory is believed to rely on top-down attentional mechanisms that sustain active sensory representations in early visual cortex, a mechanism referred to as sensory recruitment. However, both bottom-up sensory input and top-down attentional modulations thereof appear to prioritize the fovea over the periphery, such that initially peripheral percepts may even be assimilated by foveal processes. This raises the question whether and how visual working memory differs for central and peripheral input. To address this, we conducted a delayed orientation recall task in which an orientation was presented either at the center of the screen or at 15° eccentricity to the left or right. Response accuracy, EEG activity, and gaze position were recorded from 30 participants. Accuracy was slightly but significantly higher for foveal versus peripheral memories. Decoding of EEG recordings revealed a clear dissociation between early sensory and later maintenance signals. Although sensory signals were clearly decodable for foveal stimuli, they were not for peripheral input. In contrast, maintenance signals were equally decodable for both foveal and peripheral memories, suggesting comparable top-down components regardless of eccentricity. Moreover, although memory representations were initially spatially specific and reflected in voltage fluctuations, later during the maintenance period, they generalized across locations, as emerged in alpha oscillations, thus revealing a dynamic transformation within memory from separate sensory traces to what we propose are common output-related codes. Furthermore, the combined absence of reliable decoding of sensory signals and robust presence of maintenance decoding indicates that storage activity patterns as measured by EEG reflect signals beyond primary visual cortex. We discuss the implications for the sensory recruitment hypothesis.

2.
iScience ; 27(4): 109565, 2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38617556

ABSTRACT

In the present study, we used an impulse perturbation method to probe working memory maintenance of colors in neurally active and activity-quiescent states, focusing on a set of pre-registered analyses. We analyzed the electroencephalograph (EEG) data of 30 participants who completed a delayed match-to-sample working memory task, in which one of the two items that were presented was retro-cued as task relevant. The analyses revealed that both cued and uncued colors were decodable from impulse-evoked activity, the latter in contrast to previous reports of working memory for orientation gratings. Decoding of colors from oscillations in the alpha band showed that cued items could be decoded therein whereas uncued items could not. Overall, the outcomes suggest that subtle differences exist between the representation of colors, and that of stimuli with spatial properties, but the present results also demonstrate that regardless of their specific neural state, both are accessible through visual impulse perturbation.

3.
Neuroimage ; 274: 120156, 2023 07 01.
Article in English | MEDLINE | ID: mdl-37146781

ABSTRACT

We investigated if learned associations between visual and auditory stimuli can afford full cross-modal access to working memory. Previous research using the impulse perturbation technique has shown that cross-modal access to working memory is one-sided; visual impulses reveal both auditory and visual memoranda, but auditory impulses do not seem to reveal visual memoranda (Wolff et al., 2020b). Our participants first learned to associate six auditory pure tones with six visual orientation gratings. Next, a delayed match-to-sample task for the orientations was completed, while EEG was recorded. Orientation memories were recalled either via their learned auditory counterpart, or were visually presented. We then decoded the orientation memories from the EEG responses to both auditory and visual impulses presented during the memory delay. Working memory content could always be decoded from visual impulses. Importantly, through recall of the learned associations, the auditory impulse also evoked a decodable response from the visual WM network, providing evidence for full cross-modal access. We also observed that after a brief initial dynamic period, the representational codes of the memory items generalized across time, as well as between perceptual maintenance and long-term recall conditions. Our results thus demonstrate that accessing learned associations in long-term memory provides a cross-modal pathway to working memory that seems to be based on a common coding scheme.


Subject(s)
Auditory Perception , Memory, Short-Term , Humans , Memory, Short-Term/physiology , Auditory Perception/physiology , Acoustic Stimulation , Learning , Memory, Long-Term , Visual Perception/physiology , Photic Stimulation
4.
Psychol Res ; 87(5): 1569-1589, 2023 Jul.
Article in English | MEDLINE | ID: mdl-36308524

ABSTRACT

Previous research has shown that more information can be stored in visual working memory (VWM) when multiple items belong to the same object. Here, in four experiments, we investigated the object effect on memory for spatially equidistant features by manipulating simple, task-irrelevant contours that combined these features. In Experiments 1, 3, and, 4, three grating orientations, and in Experiment 2, one color and two orientations, were presented simultaneously to be memorized. Mixture modeling was applied to estimate both the precision and the guess rates of recall errors. Overall results showed that two target features were remembered more accurately when both were part of the same object. Further analysis showed that the probability of recall increased in particular when both features were extracted from the same object. In Experiment 2, we found that the object effect was greater for features from orthogonal dimensions, but this came at the cost of lower memory precision. In Experiment 3, when we kept the locations of the features perfectly consistent over trials so that the participants could attend to these locations rather than the contour, we still found object benefits. Finally, in Experiment 4 when we manipulated the temporal order of the object and the memory features presentations, it was confirmed that the object benefit is unlikely to stem from the strategical usage of object information. These results suggested that the object benefit arises automatically, likely at an early perceptual level.


Subject(s)
Form Perception , Memory, Short-Term , Humans , Pattern Recognition, Visual , Mental Recall , Orientation
5.
J Neurosci ; 40(3): 671-681, 2020 01 15.
Article in English | MEDLINE | ID: mdl-31754009

ABSTRACT

It is unclear to what extent sensory processing areas are involved in the maintenance of sensory information in working memory (WM). Previous studies have thus far relied on finding neural activity in the corresponding sensory cortices, neglecting potential activity-silent mechanisms, such as connectivity-dependent encoding. It has recently been found that visual stimulation during visual WM maintenance reveals WM-dependent changes through a bottom-up neural response. Here, we test whether this impulse response is uniquely visual and sensory-specific. Human participants (both sexes) completed visual and auditory WM tasks while electroencephalography was recorded. During the maintenance period, the WM network was perturbed serially with fixed and task-neutral auditory and visual stimuli. We show that a neutral auditory impulse-stimulus presented during the maintenance of a pure tone resulted in a WM-dependent neural response, providing evidence for the auditory counterpart to the visual WM findings reported previously. Interestingly, visual stimulation also resulted in an auditory WM-dependent impulse response, implicating the visual cortex in the maintenance of auditory information, either directly or indirectly, as a pathway to the neural auditory WM representations elsewhere. In contrast, during visual WM maintenance, only the impulse response to visual stimulation was content-specific, suggesting that visual information is maintained in a sensory-specific neural network, separated from auditory processing areas.SIGNIFICANCE STATEMENT Working memory is a crucial component of intelligent, adaptive behavior. Our understanding of the neural mechanisms that support it has recently shifted: rather than being dependent on an unbroken chain of neural activity, working memory may rely on transient changes in neuronal connectivity, which can be maintained efficiently in activity-silent brain states. Previous work using a visual impulse stimulus to perturb the memory network has implicated such silent states in the retention of line orientations in visual working memory. Here, we show that auditory working memory similarly retains auditory information. We also observed a sensory-specific impulse response in visual working memory, while auditory memory responded bimodally to both visual and auditory impulses, possibly reflecting visual dominance of working memory.


Subject(s)
Auditory Perception/physiology , Memory, Short-Term/physiology , Visual Perception/physiology , Acoustic Stimulation , Adolescent , Adult , Cues , Electroencephalography , Evoked Potentials , Female , Generalization, Psychological , Humans , Male , Nerve Net/physiology , Orientation/physiology , Photic Stimulation , Pitch Perception , Psychomotor Performance/physiology , Young Adult
6.
PLoS One ; 12(1): e0169927, 2017.
Article in English | MEDLINE | ID: mdl-28103267

ABSTRACT

While many studies have shown that a task-irrelevant emotionally arousing stimulus can interfere with the processing of a shortly following target, it remains unclear whether an emotional stimulus can also retro-actively interrupt the ongoing processing of an earlier target. In two experiments, we examined whether the presentation of a negative emotionally arousing picture can disrupt working memory consolidation of a preceding visual target. In both experiments, the effects of negative emotional pictures were compared with the effects of neutral pictures. In Experiment 1, the pictures were entirely task-irrelevant whereas in Experiment 2 the pictures were associated with a 2-alternative forced choice task that required participants to respond to the color of a frame surrounding the pictures. The results showed that the appearance of the pictures did not interfere with target consolidation when the pictures were task-irrelevant, whereas such interference was observed when the pictures were associated with a 2-AFC task. Most importantly, however, the results showed no effects of whether the picture had neutral or emotional content. Implications for further research are discussed.


Subject(s)
Emotions/physiology , Memory Consolidation/physiology , Memory, Short-Term/physiology , Humans , Male , Photic Stimulation , Reaction Time , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...