Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nature ; 410(6827): 441-3, 2001 Mar 22.
Article in English | MEDLINE | ID: mdl-11260705

ABSTRACT

Neutrinos are elementary particles that carry no electric charge and have little mass. As they interact only weakly with other particles, they can penetrate enormous amounts of matter, and therefore have the potential to directly convey astrophysical information from the edge of the Universe and from deep inside the most cataclysmic high-energy regions. The neutrino's great penetrating power, however, also makes this particle difficult to detect. Underground detectors have observed low-energy neutrinos from the Sun and a nearby supernova, as well as neutrinos generated in the Earth's atmosphere. But the very low fluxes of high-energy neutrinos from cosmic sources can be observed only by much larger, expandable detectors in, for example, deep water or ice. Here we report the detection of upwardly propagating atmospheric neutrinos by the ice-based Antarctic muon and neutrino detector array (AMANDA). These results establish a technology with which to build a kilometre-scale neutrino observatory necessary for astrophysical observations.

2.
Appl Opt ; 36(18): 4168-80, 1997 Jun 20.
Article in English | MEDLINE | ID: mdl-18253445

ABSTRACT

We discuss recent measurements of the wavelength-dependent absorption coefficients in deep South Pole ice. The method uses transit-time distributions of pulses from a variable-frequency laser sent between emitters and receivers embedded in the ice. At depths of 800-1000 m scattering is dominated by residual air bubbles, whereas absorption occurs both in ice itself and in insoluble impurities. The absorption coefficient increases approximately exponentially with wavelength in the measured interval 410-610 nm. At the shortest wavelength our value is approximately a factor 20 below previous values obtained for laboratory ice and lake ice; with increasing wavelength the discrepancy with previous measurements decreases. At ~415 to ~500 nm the experimental uncertainties are small enough for us to resolve an extrinsic contribution to absorption in ice: submicrometer dust particles contribute by an amount that increases with depth and corresponds well with the expected increase seen near the Last Glacial Maximum in Vostok and Dome C ice cores. The laser pulse method allows remote mapping of gross structure in dust concentration as a function of depth in glacial ice.

3.
Science ; 267(5201): 1147-50, 1995 Feb 24.
Article in English | MEDLINE | ID: mdl-17789196

ABSTRACT

The optical properties of the ice at the geographical South Pole have been investigated at depths between 0.8 and 1 kilometer. The absorption and scattering lengths of visible light ( approximately 515 nanometers) have been measured in situ with the use of the laser calibration setup of the Antarctic Muon and Neutrino Detector Array (AMANDA) neutrino detector. The ice is intrinsically extremely transparent. The measured absorption length is 59 +/- 3 meters, comparable with the quality of the ultrapure water used in the Irvine-Michigan-Brookhaven and Kamiokande proton-decay and neutrino experiments and more than twice as long as the best value reported for laboratory ice. Because of a residual density of air bubbles at these depths, the trajectories of photons in the medium are randomized. If the bubbles are assumed to be smooth and spherical, the average distance between collisions at a depth of 1 kilometer is about 25 centimeters. The measured inverse scattering length on bubbles decreases linearly with increasing depth in the volume of ice investigated.

SELECTION OF CITATIONS
SEARCH DETAIL
...