Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Chem Biol ; 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38980123

ABSTRACT

Targeted protein degradation (TPD) is a therapeutic approach that leverages the cell's natural machinery to degrade targets instead of inhibiting them. This is accomplished by using mono- or bifunctional small molecules designed to induce the proximity of target proteins and E3 ubiquitin ligases, leading to ubiquitination and subsequent proteasome-dependent degradation of the target. One of the most significant attributes of the TPD approach is its proposed catalytic mechanism of action, which permits substoichiometric exposure to achieve the desired pharmacological effects. However, apart from one in vitro study, studies supporting the catalytic mechanism of degraders are largely inferred based on potency. A more comprehensive understanding of the degrader catalytic mechanism of action can help aspects of compound development. To address this knowledge gap, we developed a workflow for the quantitative measurement of the catalytic rate of degraders in cells. Comparing a selective and promiscuous BTK degrader, we demonstrate that both compounds function as efficient catalysts of BTK degradation, with the promiscuous degrader exhibiting faster rates due to its ability to induce more favorable ternary complexes. By leveraging computational modeling, we show that the catalytic rate is highly dynamic as the target is depleted from cells. Further investigation of the promiscuous kinase degrader revealed that the catalytic rate is a better predictor of optimal degrader activity toward a specific target compared to degradation magnitude alone. In summary, we present a versatile method for mapping the catalytic activity of any degrader for TPD in cells.

2.
J Proteome Res ; 22(11): 3475-3488, 2023 11 03.
Article in English | MEDLINE | ID: mdl-37847596

ABSTRACT

Numerous Aß proteoforms, identified in the human brain, possess differential neurotoxic and aggregation propensities. These proteoforms contribute in unknown ways to the conformations and resultant pathogenicity of oligomers, protofibrils, and fibrils in Alzheimer's disease (AD) manifestation owing to the lack of molecular-level specificity to the exact chemical composition of underlying protein products with widespread interrogating techniques, like immunoassays. We evaluated Aß proteoform flux using quantitative top-down mass spectrometry (TDMS) in a well-studied 5xFAD mouse model of age-dependent Aß-amyloidosis. Though the brain-derived Aß proteoform landscape is largely occupied by Aß1-42, 25 different forms of Aß with differential solubility were identified. These proteoforms fall into three natural groups defined by hierarchical clustering of expression levels in the context of mouse age and proteoform solubility, with each group sharing physiochemical properties associated with either N/C-terminal truncations or both. Overall, the TDMS workflow outlined may hold tremendous potential for investigating proteoform-level relationships between insoluble fibrils and soluble Aß, including low-molecular-weight oligomers hypothesized to serve as the key drivers of neurotoxicity. Similarly, the workflow may also help to validate the utility of AD-relevant animal models to recapitulate amyloidosis mechanisms or possibly explain disconnects observed in therapeutic efficacy in animal models vs humans.


Subject(s)
Alzheimer Disease , Amyloidosis , Mice , Humans , Animals , Amyloid beta-Peptides/metabolism , Alzheimer Disease/metabolism , Mice, Transgenic , Disease Models, Animal , Mass Spectrometry
3.
Rapid Commun Mass Spectrom ; 36(22): e9377, 2022 Nov 30.
Article in English | MEDLINE | ID: mdl-35940586

ABSTRACT

RATIONALE: The in-sample calibration curve (ISCC) approach of quantification utilizes the response of isotopologue ions from spiked-in stable isotope labeled internal standard (SIL-IS) to build a standard curve. The quantitative analysis of the study sample is achieved based on the response of selected monoisotopic analyte ion against the calibration curve. Although this methodology has been demonstrated to be feasible by unit and high-resolution mass spectrometers, quantitation on high-resolution mass spectrometer with product ions has not been tested. We tested the feasibility of this approach using product ions on an high-resolution mass spectrometer equipped with an Orbitrap detector. METHODS: Using a proteomics workflow for sample preparation, two surrogate peptides were quantified from a complex matrix of protein digest from human peripheral blood mononuclear cells (hPBMCs). SIL-IS was spiked in at different levels to construct calibration curves in a traditional manner. ISCCs were prepared using extracted ion chromatograms from isotopically resolved mass spectra and compared with traditional calibration curves. RESULTS: A linear response was observed with ISCC approach for at least two to three orders of magnitude in MS1 as well as targeted MS2 (tMS2). From protein digests, isobaric interferences were observed for endogenous peptides on the MS1 level; this was circumvented with product-ion-based quantitation where for one peptide, %CV for endogenous levels was more than 20% with ISCC but higher with the traditional calibration curve approach. For the second peptide, endogenous levels could not be determined in the traditional approach as calibrant levels did not bracket the lower end, and with the ISCC approach, isotopologues at abundances lower than the endogenous level allowed for quantitative assessments. CONCLUSIONS: ISCC demonstrated improved precision across surrogate peptides from endogenous protein digests. In samples where endogenous analyte concentrations were low in abundance, ISCC rescued what would have been a non-reportable result in a traditional bioanalytical assay as calibrant levels were not prepared at adequately low levels to bracket unknowns. ISCC using high-resolution mass spectrometer is feasible and ideal compared to unit resolution mass spectrometers. High-resolution mass spectrometer allows for isotopic resolution for analytes with > + 2 charge state and provides flexibility in quantification using multiple product ions. ISCC using high-resolution mass spectrometer allows for simultaneous assaying of low abundance isotopologues, the signal acquisition of which is not constrained by limits in data acquisition or calibrant preparation as with other approaches but rather limited by platform sensitivity. In contrast to unit resolution mass spectrometers, these features offered by high-resolution mass spectrometer could be especially useful for the drug discovery assay support where there is less lead time for assay development than for the assays to support the drug development studies.


Subject(s)
Leukocytes, Mononuclear , Tandem Mass Spectrometry , Calibration , Humans , Isotopes , Peptides , Tandem Mass Spectrometry/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...