Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Plant Cell ; 33(4): 882-900, 2021 05 31.
Article in English | MEDLINE | ID: mdl-33681994

ABSTRACT

Vitamin A deficiency remains prevalent in parts of Asia, Latin America, and sub-Saharan Africa where maize (Zea mays) is a food staple. Extensive natural variation exists for carotenoids in maize grain. Here, to understand its genetic basis, we conducted a joint linkage and genome-wide association study of the US maize nested association mapping panel. Eleven of the 44 detected quantitative trait loci (QTL) were resolved to individual genes. Six of these were correlated expression and effect QTL (ceeQTL), showing strong correlations between RNA-seq expression abundances and QTL allelic effect estimates across six stages of grain development. These six ceeQTL also had the largest percentage of phenotypic variance explained, and in major part comprised the three to five loci capturing the bulk of genetic variation for each trait. Most of these ceeQTL had strongly correlated QTL allelic effect estimates across multiple traits. These findings provide an in-depth genome-level understanding of the genetic and molecular control of carotenoids in plants. In addition, these findings provide a roadmap to accelerate breeding for provitamin A and other priority carotenoid traits in maize grain that should be readily extendable to other cereals.


Subject(s)
Carotenoids/metabolism , Seeds/genetics , Zea mays/genetics , Zea mays/metabolism , Epistasis, Genetic , Genetic Variation , Genome-Wide Association Study , Phenotype , Plant Proteins/genetics , Quantitative Trait Loci , Seeds/metabolism
2.
Plant Cell ; 29(10): 2374-2392, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28970338

ABSTRACT

Tocopherols, tocotrienols, and plastochromanols (collectively termed tocochromanols) are lipid-soluble antioxidants synthesized by all plants. Their dietary intake, primarily from seed oils, provides vitamin E and other health benefits. Tocochromanol biosynthesis has been dissected in the dicot Arabidopsis thaliana, which has green, photosynthetic seeds, but our understanding of tocochromanol accumulation in major crops, whose seeds are nonphotosynthetic, remains limited. To understand the genetic control of tocochromanols in grain, we conducted a joint linkage and genome-wide association study in the 5000-line U.S. maize (Zea mays) nested association mapping panel. Fifty-two quantitative trait loci for individual and total tocochromanols were identified, and of the 14 resolved to individual genes, six encode novel activities affecting tocochromanols in plants. These include two chlorophyll biosynthetic enzymes that explain the majority of tocopherol variation, which was not predicted given that, like most major cereal crops, maize grain is nonphotosynthetic. This comprehensive assessment of natural variation in vitamin E levels in maize establishes the foundation for improving tocochromanol and vitamin E content in seeds of maize and other major cereal crops.


Subject(s)
Vitamin E/metabolism , Zea mays/metabolism , Chlorophyll/metabolism , Genome-Wide Association Study , Quantitative Trait Loci/genetics , Tocopherols/metabolism , Tocotrienols/metabolism
3.
Curr Opin Plant Biol ; 24: 110-8, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25795170

ABSTRACT

Quantification of genotype-to-phenotype associations is central to many scientific investigations, yet the ability to obtain consistent results may be thwarted without appropriate statistical analyses. Models for association can consider confounding effects in the materials and complex genetic interactions. Selecting optimal models enables accurate evaluation of associations between marker loci and numerous phenotypes including gene expression. Significant improvements in QTL discovery via association mapping and acceleration of breeding cycles through genomic selection are two successful applications of models using genome-wide markers. Given recent advances in genotyping and phenotyping technologies, further refinement of these approaches is needed to model genetic architecture more accurately and run analyses in a computationally efficient manner, all while accounting for false positives and maximizing statistical power.


Subject(s)
Genome, Plant , Plants/genetics , Selection, Genetic , Models, Genetic , Phenotype
4.
Genetics ; 198(4): 1699-716, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25258377

ABSTRACT

Efforts are underway for development of crops with improved levels of provitamin A carotenoids to help combat dietary vitamin A deficiency. As a global staple crop with considerable variation in kernel carotenoid composition, maize (Zea mays L.) could have a widespread impact. We performed a genome-wide association study (GWAS) of quantified seed carotenoids across a panel of maize inbreds ranging from light yellow to dark orange in grain color to identify some of the key genes controlling maize grain carotenoid composition. Significant associations at the genome-wide level were detected within the coding regions of zep1 and lut1, carotenoid biosynthetic genes not previously shown to impact grain carotenoid composition in association studies, as well as within previously associated lcyE and crtRB1 genes. We leveraged existing biochemical and genomic information to identify 58 a priori candidate genes relevant to the biosynthesis and retention of carotenoids in maize to test in a pathway-level analysis. This revealed dxs2 and lut5, genes not previously associated with kernel carotenoids. In genomic prediction models, use of markers that targeted a small set of quantitative trait loci associated with carotenoid levels in prior linkage studies were as effective as genome-wide markers for predicting carotenoid traits. Based on GWAS, pathway-level analysis, and genomic prediction studies, we outline a flexible strategy involving use of a small number of genes that can be selected for rapid conversion of elite white grain germplasm, with minimal amounts of carotenoids, to orange grain versions containing high levels of provitamin A.


Subject(s)
Carotenoids/metabolism , Genome-Wide Association Study , Models, Biological , Zea mays/genetics , Zea mays/metabolism , Biosynthetic Pathways , Genomics , Linkage Disequilibrium , Phenotype , Quantitative Trait Loci , Quantitative Trait, Heritable , Reproducibility of Results
5.
Front Plant Sci ; 4: 488, 2013.
Article in English | MEDLINE | ID: mdl-24363659

ABSTRACT

The improvement of grain nutrient profiles for essential minerals and vitamins through breeding strategies is a target important for agricultural regions where nutrient poor crops like maize contribute a large proportion of the daily caloric intake. Kernel iron concentration in maize exhibits a broad range. However, the magnitude of genotype by environment (GxE) effects on this trait reduces the efficacy and predictability of selection programs, particularly when challenged with abiotic stress such as water and nitrogen limitations. Selection has also been limited by an inverse correlation between kernel iron concentration and the yield component of kernel size in target environments. Using 25 maize inbred lines for which extensive genome sequence data is publicly available, we evaluated the response of kernel iron density and kernel mass to water and nitrogen limitation in a managed field stress experiment using a factorial design. To further understand GxE interactions we used partition analysis to characterize response of kernel iron and weight to abiotic stressors among all genotypes, and observed two patterns: one characterized by higher kernel iron concentrations in control over stress conditions, and another with higher kernel iron concentration under drought and combined stress conditions. Breeding efforts for this nutritional trait could exploit these complementary responses through combinations of favorable allelic variation from these already well-characterized genetic stocks.

6.
Theor Appl Genet ; 126(11): 2879-95, 2013 Nov.
Article in English | MEDLINE | ID: mdl-24042570

ABSTRACT

KEY MESSAGE: Genetic control of maize grain carotenoid profiles is coordinated through several loci distributed throughout three secondary metabolic pathways, most of which exhibit additive, and more importantly, pleiotropic effects. The genetic basis for the variation in maize grain carotenoid concentrations was investigated in two F2:3 populations, DEexp × CI7 and A619 × SC55, derived from high total carotenoid and high ß-carotene inbred lines. A comparison of grain carotenoid concentrations from population DEexp × CI7 grown in different environments revealed significantly higher concentrations and greater trait variation in samples harvested from a subtropical environment relative to those from a temperate environment. Genotype by environment interactions was significant for most carotenoid traits. Using phenotypic data in additive, environment-specific genetic models, quantitative trait loci (QTL) were identified for absolute and derived carotenoid traits in each population, including those specific to the isomerization of ß-carotene. A multivariate approach for these correlated traits was taken, using carotenoid trait principal components (PCs) that jointly accounted for 97 % or more of trait variation. Component loadings for carotenoid PCs were interpreted in the context of known substrate-product relationships within the carotenoid pathway. Importantly, QTL for univariate and multivariate traits were found to cluster in close proximity to map locations of loci involved in methyl-erythritol, isoprenoid and carotenoid metabolism. Several of these genes, including lycopene epsilon cyclase, carotenoid cleavage dioxygenase1 and beta-carotene hydroxylase, were mapped in the segregating populations. These loci exhibited pleiotropic effects on α-branch carotenoids, total carotenoid profile and ß-branch carotenoids, respectively. Our results confirm that several QTL are involved in the modification of carotenoid profiles, and suggest genetic targets that could be used for the improvement of total carotenoid and ß-carotene in future breeding populations.


Subject(s)
Carotenoids/genetics , Genetic Variation , Seeds/genetics , Zea mays/genetics , Biosynthetic Pathways/genetics , Chromosome Mapping , Crosses, Genetic , Genes, Plant/genetics , Metabolic Networks and Pathways/genetics , Principal Component Analysis , Quantitative Trait Loci/genetics , Quantitative Trait, Heritable
SELECTION OF CITATIONS
SEARCH DETAIL
...