Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
J Helminthol ; 91(5): 583-588, 2017 Sep.
Article in English | MEDLINE | ID: mdl-27762173

ABSTRACT

Haemonchus contortus is a major parasite of small ruminants and its blood-feeding behaviour causes effects ranging from mild anaemia to death. Knowledge of the genetic variation within and among H. contortus populations can provide the foundation for understanding transmission patterns and aid in the control of haemonchosis. Adult male H. contortus were collected from three geographical regions in Egypt. The second internal transcribed spacer (ITS2) of nuclear ribosomal DNA was amplified using the polymerase chain reaction (PCR) and sequenced directly. The population genetic diversity and sequence variations were determined. Nucleotide sequence analyses revealed one genotype (ITS2) in all worms, without genetic differentiation. The similarity in population genetic diversity and genetic patterns observed among the three geographical regions could be attributed to possible movement between the sites. This is the first study of genetic variation in H. contortus in Egypt. The present results could have implications for the rapid characterization of H. contortus and other trichostrongyloid nematodes, and evaluation of the epidemiology of H. contortus in Egypt.


Subject(s)
Genetic Variation , Phylogeny , Sheep Diseases/parasitology , Trichostrongyloidea/classification , Trichostrongyloidea/genetics , Trichostrongyloidiasis/veterinary , Animals , Cluster Analysis , DNA, Helminth/chemistry , DNA, Helminth/genetics , DNA, Ribosomal Spacer/chemistry , DNA, Ribosomal Spacer/genetics , Egypt , Genotype , Male , Polymerase Chain Reaction , Sequence Analysis, DNA , Sheep , Trichostrongyloidea/isolation & purification , Trichostrongyloidiasis/parasitology
2.
Theriogenology ; 77(6): 1240-51, 2012 Apr 01.
Article in English | MEDLINE | ID: mdl-22289221

ABSTRACT

The retarded development of parthenote embryo could be due to aberrant epigenetic imprinting, which may disrupt many aspects and lead to conceptus demise. The present work was conducted to: 1) compare the development of in vitro produced (IVP) and parthenogenetically developed (P) buffalo embryos from the 2-cell to blastocyst stage; 2) investigate the global gene expression profile and search for new candidate transcripts differing between IVP and P buffalo blastocyst using cDNA microarray analysis (validated by Real Time PCR); 3) follow the particular expression patterns of PLAC8 and OCT4 genes at five different stages of preimplantation development by Real Time PCR; and 4) study the expression of CDX2 at the blastcocyst stage. Cleavage rate was higher (P < 0.05) in P than IVP buffalo embryos, while, progression to blastocyst and number of cells per blastocyst were lower (P < 0.05) in P than IVP blastocysts. Microarray analysis indicate that 56 differentially expressed genes between the two groups, of which 51 genes (91.07%) were up-regulated, and five genes were downregulated in IVP blastocyst, using 1.4 fold-changes as a cutoff. Differentially expressed genes are related to translation, nucleic acid synthesis, cell adhesion and placentation. Validation of candidate genes revealed that the transcript abundance of PTGS2, RPS27A, TM2D3, PPA1, AlOX15, RPLO and PLAC8 were downregulated (7/8) in parthenote blastocyst compared to the IVP blastocyst. PLAC8 gene expression was higher (P < 0.05) at 2-cell, morula and blastocyst stages in IVP embryos compared with parthenote embryos. The OCT4 gene expression was higher (P < 0.05) in 2-cell, 4-cell, 8-cell and blastocysts produced in vitro. In conclusion, the retarded development of parthenogenetic buffalo embryos could be due to downregulation of genes related to translation, nucleic acid synthesis, cell adhesion, and placental development. The low expression of PLAC8 and OCT4 during the different stages of development may be responsible, in part, to the failure of development of parthenote buffalo embryos.


Subject(s)
Buffaloes/embryology , Embryo Culture Techniques/veterinary , Gene Expression Regulation, Developmental , Sperm Injections, Intracytoplasmic/veterinary , Animals , Buffaloes/genetics , Embryonic Development/genetics , Epigenesis, Genetic , Gene Expression Profiling/veterinary , Octamer Transcription Factor-3/genetics , Octamer Transcription Factor-3/metabolism , Oligonucleotide Array Sequence Analysis/veterinary , Proteins/genetics , Proteins/metabolism
3.
Reprod Domest Anim ; 45(1): 63-74, 2010 Feb.
Article in English | MEDLINE | ID: mdl-19144006

ABSTRACT

The need for improving in vitro production of buffalo embryos necessitates a better understanding of the molecular mechanisms regulating early development including oocyte maturation. Here, we used bovine cDNA microarray platform to investigate mRNA abundance of buffalo oocytes before and after in vitro maturation. For this, a total of six pools each contains 50 immature or in vitro matured buffalo oocytes were used for mRNA isolation and subsequent cDNA synthesis. The BlueChip bovine cDNA microarray (with approximately 2000 clones) was used to analyse gene expression profiles between immature and matured oocytes. Statistical analysis of microarray data revealed a total of 104 transcripts to be differentially expressed between the two oocyte groups. Among these, transcription factors (ZFP91), M-phase mitotic cell cycle (MPHOSPH9), growth factor (BMP15) and DNA binding (HMGN2) were found to be up-regulated in immature oocytes. Similarly, matured oocytes were found to be enriched with genes involved in cytoskeleton (ACTB), hydrogen ion transporting (ATP6V1C2) and structural constituent of ribosome (RPS27A). Quantitative real-time polymerase chain reaction validated the expression profile of some selected transcripts during array analysis. In conclusion, to our knowledge, this is the first large-scale expression study to identify candidate genes differentially abundant and with potential role during buffalo oocyte maturation.


Subject(s)
Buffaloes/genetics , Gene Expression Profiling/veterinary , Oligonucleotide Array Sequence Analysis/veterinary , Oocytes/chemistry , Oocytes/growth & development , RNA, Messenger/analysis , Animals , Cattle/genetics , Cells, Cultured , Female , Fertilization in Vitro , Gene Expression Regulation , Male , Polymerase Chain Reaction/veterinary
4.
Reprod Domest Anim ; 42(1): 88-93, 2007 Feb.
Article in English | MEDLINE | ID: mdl-17214780

ABSTRACT

The present work was conducted to examine (1) the morphology of dromedary cumulus-oocytes complexes (COCs), (2) to study the incidence of spontaneous development of oocytes in vivo and (3) to assess the ability of in vitro matured dromedary oocytes to chemical parthenogenetic activation compared with in vitro fertilized (IVF) oocytes. COCs were recovered from dromedary ovaries classified according to their morphology into six categories. Oocyte diameter was measured using eye piece micrometer. For chemical activation, COCs with at least three layers of cumulus-cells were in vitro matured (IVM) in TCM 199 + 10 microg/ml FSH + 10 IU hCG/ml + 10% FCS + 50 microg/ml gentamycin. COCs were incubated for 40 h at 38.5 degrees C under 5% CO2 in humidified air. After IVM, matured oocytes with first polar body (first Pb) were divided into two groups. Group 1: activated in 7% ethanol (E) for 5 min followed by culture in 2 mM 6-dimethylaminopurin (6-DMAP, E D, subgroup 1) or 10 microg/ml cycloheximide (CHX, E CHX, subgroup 2) for 3.5 h at 38.5 degrees C under 5% CO2. In group 2, oocytes were activated using 50 microM Ca A23187 (Ca A) for 5 min followed by culture in 2 mM 6-DMAP (Ca D, subgroup 3) or 10 microg/ml CHX(Ca CHX, subgroup 4) for 3.5 h at 38.5 degrees C under 5% CO2. For control group, IVM oocytes were fertilized using frozen-thawed camel spermatozoa separated by swim-up method then suspended in Fert-TALP medium supplemented with 6 mg/ml BSA (FAF) + 10 microg/ml heparin. In all groups, oocytes were in vitro cultured in SOFaa medium + 5% FCS and 5 microg/ml insulin + 50 microg/ml gentamycin. Cleavage rate and embryo development were checked on Days 2, 5 and 8. An average of 11.3 +/- 0.3 COCs were recovered/dromedary ovary. Categories 1 and 2 represented 33.1% and 34.8%, respectively, and were significantly higher (p < 0.01) than the other categories (19.1, 9.2 and 2.6% for categories 3-5, respectively). Category 6 (embryo-like structures) represented 1.2% of the recovered oocytes, staining of these embryo-like structures with orcien dye indicated the presence of divided cells with condensed nuclei. Dromedary oocytes averaged 166.2 +/- 2.6 microm in diameter with black cytoplasm. Chemical activation of IVM dromedary oocyte with first Pb in 7% ethanol or 50 microM Ca A followed by culture in 2 mM 6-DMAP showed significantly higher (p < 0.01) cleavage and developmental rates to the morula stage than oocytes activated using 7% ethanol or 50 microM Ca A followed by 10 microg/ml CHX or in vitro fertilized control group. Higher (p < 0.01) proportion of oocytes sequentially cultured in 10 microg/ml CHX or that in vitro fertilized were arrested at the 2-4-cell stage compared with that cultured in 6-DMAP.


Subject(s)
Camelus , Culture Media/chemistry , Oocytes/physiology , Parthenogenesis/drug effects , Parthenogenesis/physiology , Animals , Chorionic Gonadotropin/pharmacology , Coculture Techniques/veterinary , Cycloheximide/pharmacology , Ethanol/pharmacology , Female , Fertilization in Vitro/veterinary , Follicle Stimulating Hormone/pharmacology
5.
Reprod Nutr Dev ; 41(1): 71-7, 2001.
Article in English | MEDLINE | ID: mdl-11368246

ABSTRACT

Three experiments were conducted to evaluate factors affecting number of surface ovarian follicles and oocytes yield and quality in buffalo. In Experiment 1, ovaries (n = 126) were collected in pairs from slaughtered anoestrus, early pregnant and cyclic buffaloes. Ovarian follicles (1-3, 4-9 and > or = 10 mm diameter) were counted, aspirated and oocytes were recovered and evaluated. In Experiment 2, ovaries were divided into 2 groups. Group 1, ovaries bearing a CL (n = 74) and Group 2 non-bearing CL (n = 74), ovarian follicles (2-8 mm) were counted, aspirated and oocytes evaluated. In Experiment 3, oocytes were recovered using aspiration or slicing methods. In all experiments, oocytes were classified into good, fair, poor and denuded. Results showed that the development of small and total ovarian follicles are continuous and independent in early pregnant or cyclic buffalo cows, however, it significantly decreased (P < 0.01) in the ovaries of anoestrus buffaloes. Number of medium and large size follicles was significantly increased (P < 0.01) in cyclic buffaloes on Days 10-16 and 17-22 of oestrous cycle, while large follicles was significantly decreased (P < 0.01) in the ovaries of pregnant buffaloes. A significantly higher (P < 0.01) percentage of poor and denuded oocytes were recovered from ovaries of anoestrus and pregnant buffalo. While, the highest (P < 0.01) percentage of good quality oocytes were recovered from ovaries of cyclic buffaloes on Days 1-3 and 10-16 of oestrous cycle, eliciting that the stage of oestrous cycle is affecting the quality of buffalo oocytes. In addition, the presence of a CL stimulates the development of a significantly higher (P < 0.01) number ovarian follicles which produced a significantly higher (P < 0.05) number of good quality oocytes. Slicing of buffalo ovaries produced a significantly higher number of fair, poor and denuded oocytes. In conclusion, number of ovarian follicles and yield and quality of oocytes were affected by the reproductive status, stage of the oestrous cycle, presence of a CL and the method of oocytes retrieval.


Subject(s)
Buffaloes/physiology , Oocytes/physiology , Ovarian Follicle/physiology , Ovary/cytology , Animals , Estrus , Female , Ovarian Follicle/cytology , Reproduction
6.
Anim Reprod Sci ; 65(3-4): 215-23, 2001 Mar 30.
Article in English | MEDLINE | ID: mdl-11267801

ABSTRACT

The present study was designed to examine the influence of oocyte quality, culture media and gonadotropins on cleavage rate and development of in vitro fertilized buffalo embryos. Three experiments were conducted. In experiment 1, oocytes were classified by number of cumulus cell layers and morphology of the ooplasm as good, fair or poor. Oocytes were cultured for IVM, IVF and IVC in CR1aa medium. In experiment 2, good quality oocytes were cultured for maturation in: (1) CR1aa; (2) CR2aa; (3) TCM-199; (4) MEM or (5) RPMI-1640, and then fertilized using frozen thawed buffalo spermatozoa in CR1aa. The oocytes were cultured in the same medium used for maturation after fertilization. In experiment 3, oocytes were classified into three groups: group (1) was without gonadotropin and serve as a control; group (2) in which IVM medium was supplemented with 10microg/ml FSH and group (3) in which IVM medium was supplemented with 10IUml(-1) eCG. In all experiments, oocytes were kept at 38.5 degrees C under 5% CO(2) for IVM, IVF, IVC and examined for cleavage and embryo development rates on days 3 and 8, respectively. Good and fair quality oocytes produced a higher cleavage rate (P<0.01) than poor quality oocytes. Morula production rate was also higher (P<0.01) for good as compared with fair quality oocytes. Embryo development with poor quality oocytes was arrested at the two to sixteen cell stage. In experiment 2, the cleavage rate was higher (P<0.05) in CR1aa than CR2aa, and higher (P<0.01) than TCM-199, MEM and RPMI-1640. The numbers of morulae and blastocysts were higher (P<0.01) for oocytes cultured in CR1aa and CR2aa media than TCM-199 or MEM. In experiment 3, the addition of FSH or eCG to the maturation medium increased (P<0.01) cleavage and developmental rates of buffalo embryo compared with control medium. In conclusion, the IVM of good quality buffalo oocytes in CR1aa or CR2aa medium and the addition of FSH or eCG in maturation medium produced higher cleavage and developmental rates of IVF buffalo embryos.


Subject(s)
Buffaloes/embryology , Culture Media , Fertilization in Vitro/veterinary , Gonadotropins/pharmacology , Oocytes/physiology , Animals , Cells, Cultured , Chorionic Gonadotropin/pharmacology , Cleavage Stage, Ovum , Cytoplasm/ultrastructure , Female , Follicle Stimulating Hormone/pharmacology , Male , Oocytes/ultrastructure , Sperm Capacitation
7.
Cloning Stem Cells ; 3(3): 157-61, 2001.
Article in English | MEDLINE | ID: mdl-11945225

ABSTRACT

Ubiquitination is a universal protein degradation pathway in which the molecules of 8.5-kDa proteolytic peptide ubiquitin are covalently attached to the epsilon-amino group of the substrate's lysine residues. Little is known about the importance of this highly conserved mechanism for protein recycling in mammalian gametogenesis and fertilization. The data obtained by the students and faculty of the international training course Window to the Zygote 2000 demonstrate the accumulation of ubiquitin-cross-reactive structures in the trophoblast, but not in the inner cell mass of the expanding bovine and mouse blastocysts. This observation suggests that a major burst of ubiquitin-dependent proteolysis occurs in the trophoblast of mammalian peri-implantation embryos. This event may be important for the success of blastocyst hatching, differentiation of embryonic stem cells into soma and germ line, and/or implantation in both naturally conceived and reconstructed mammalian embryos.


Subject(s)
Mammals/embryology , Trophoblasts/metabolism , Ubiquitin/metabolism , Animals , Biomarkers/analysis , Blastocyst/metabolism , Cattle , Cells, Cultured , Mice , Mice, Inbred ICR
SELECTION OF CITATIONS
SEARCH DETAIL
...