Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Exp Bot ; 51(347): 1099-105, 2000 Jun.
Article in English | MEDLINE | ID: mdl-10948237

ABSTRACT

The activity of nitrate reductase (+Mg(2+), NR(act)) in illuminated leaves from spinach, barley and pea was 50-80% of the maximum activity (+EDTA, NR(max)). However, NR from leaves of Ricinus communis L. had a 10-fold lower NR(act), while NR(max) was similar to that in spinach leaves. The low NR(act) of Ricinus was independent of day-time and nitrate nutrition, and varied only slightly with leaf age. Possible factors in Ricinus extracts inhibiting NR were not found. NR(act) from Ricinus, unlike the spinach enzyme, was very low at pH 7.6, but much higher at more acidic pH with a distinct maximum at pH 6.5. NR(max) had a broad pH response profile that was similar for the spinach and the Ricinus enzyme. Accordingly, the Mg(2+)-sensitivity of NR from Ricinus was strongly pH-dependent (increasing sensitivity with increasing pH), and as a result, the apparent activation state of NR from a Ricinus extract varied dramatically with pH and Mg(2+)concentration. Following a light-dark transition, NR(act) from Ricinus decreased within 1 h by 40%, but this decrease was paralleled by NR(max). In contrast to the spinach enzyme, Ricinus-NR was hardly inactivated by incubating leaf extracts with ATP plus okadaic acid. A competition analysis with antibodies against the potential 14-3-3 binding site around ser 543 of the spinach enzyme revealed that Ricinus-NR contains the same site. Removal of 14-3-3 proteins from Ricinus-NR by anion exchange chromatography, activated spinach-NR but caused little if any activation of Ricinus-NR. It is suggested that Mg(2+)-inhibition of Ricinus-NR does not require 14-3-3 proteins. The rather slow changes in Ricinus-NR activity upon a light/dark transient may be mainly due to NR synthesis or degradation.


Subject(s)
Nitrate Reductases/metabolism , Plants, Toxic , Ricinus/enzymology , Spinacia oleracea/enzymology , 14-3-3 Proteins , Blotting, Western , Hydrogen-Ion Concentration , Lighting , Magnesium/metabolism , Nitrate Reductase (NADH) , Phosphorylation , Plant Leaves/enzymology , Plant Leaves/metabolism , Ricinus/metabolism , Spinacia oleracea/metabolism , Tyrosine 3-Monooxygenase/metabolism
2.
Planta ; 210(5): 801-7, 2000 Apr.
Article in English | MEDLINE | ID: mdl-10805452

ABSTRACT

Nitrate reductase (NR) activity in spinach leaf extracts prepared in the presence of a protein phosphatase inhibitor (50 microM cantharidine) was measured in the presence of Mg2+ (NRact) or EDTA (NRmax), under substrate saturation. These in-vitro activities were compared with nitrate reduction rates in leaves from nitrate-sufficient plants. Spinach leaves containing up to 60 micromol nitrate per g fresh weight were illuminated in air with their petiole in water. Their nitrate content decreased with time, permitting an estimation of nitrate reduction in situ. The initial rates (1-2 h) of nitrate consumption were usually lower than NRact, and with longer illumination time (4 h) the discrepancy grew even larger. When leaves were fed through their petiole with 30 mM nitrate, initial in-situ reduction rates calculated from nitrate uptake and consumption were still lower than NRact. However, nitrate feeding through the petiole maintained the in situ-nitrate reduction rate for a longer time. Initial rates of nitrate reduction in situ only matched NRact when leaves were illuminated in 5% CO2. In CO2-free air or in the dark, both NRact and in-situ nitrate reduction decreased, but NRact still exceeded in-situ reduction. More extremely, under anoxia or after feeding 5-amino-4-imidazole carboxyamide ribonucleoside in the dark, NR was activated to the high light level; yet in spite of that, nitrate reduction in the leaf remained very low. It was examined whether the standard assay for NRact would overestimate the in-situ rates due to a dissociation of the inactive phospho-NR-14-3-3 complex after extraction and dilution, but no evidence for that was found. In-situ NR obviously operates below substrate saturation, except in the light at high ambient CO2. It is suggested that in the short term (2 h), nitrate reduction in situ is mainly limited by cytosolic NADH, and cytosolic nitrate becomes limiting only after the vacuolar nitrate pool has been partially emptied.


Subject(s)
Nitrate Reductases/metabolism , Nitrates/metabolism , Plant Leaves/metabolism , Tyrosine 3-Monooxygenase , 14-3-3 Proteins , Darkness , Light , Nitrate Reductase , Nitrates/pharmacology , Nitrites/metabolism , Oxidation-Reduction , Plant Extracts/metabolism , Plant Leaves/drug effects , Plant Leaves/radiation effects , Plant Proteins/pharmacology , Potassium Compounds/pharmacology , Proteins/pharmacology , Spinacia oleracea/drug effects , Spinacia oleracea/metabolism , Spinacia oleracea/radiation effects
SELECTION OF CITATIONS
SEARCH DETAIL
...