Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Bioorg Med Chem Lett ; 26(20): 5044-5050, 2016 10 15.
Article in English | MEDLINE | ID: mdl-27599745

ABSTRACT

Liver X receptor (LXR) agonists have been reported to lower brain amyloid beta (Aß) and thus to have potential for the treatment of Alzheimer's disease. Structure and property based design led to the discovery of a series of orally bioavailable, brain penetrant LXR agonists. Oral administration of compound 18 to rats resulted in significant upregulation of the expression of the LXR target gene ABCA1 in brain tissue, but no significant effect on Aß levels was detected.


Subject(s)
Brain/metabolism , Liver X Receptors/drug effects , ATP Binding Cassette Transporter 1/genetics , ATP Binding Cassette Transporter 1/metabolism , Animals , Male , RNA, Messenger/genetics , Rats , Rats, Sprague-Dawley , Structure-Activity Relationship , Up-Regulation
2.
J Med Chem ; 59(7): 3264-71, 2016 Apr 14.
Article in English | MEDLINE | ID: mdl-26990539

ABSTRACT

This article describes the application of Contour to the design and discovery of a novel, potent, orally efficacious liver X receptor ß (LXRß) agonist (17). Contour technology is a structure-based drug design platform that generates molecules using a context perceptive growth algorithm guided by a contact sensitive scoring function. The growth engine uses binding site perception and programmable growth capability to create drug-like molecules by assembling fragments that naturally complement hydrophilic and hydrophobic features of the protein binding site. Starting with a crystal structure of LXRß and a docked 2-(methylsulfonyl)benzyl alcohol fragment (6), Contour was used to design agonists containing a piperazine core. Compound 17 binds to LXRß with high affinity and to LXRα to a lesser extent, and induces the expression of LXR target genes in vitro and in vivo. This molecule served as a starting point for further optimization and generation of a candidate which is currently in human clinical trials for treating atopic dermatitis.


Subject(s)
Benzylamines/chemistry , Drug Design , Drug Discovery , Orphan Nuclear Receptors/agonists , Piperazines/chemistry , Pyrimidines/chemistry , Pyrimidines/metabolism , Sulfones/chemistry , Sulfones/metabolism , Binding Sites , Crystallography, X-Ray , Humans , Liver X Receptors , Structure-Activity Relationship
3.
Bioorg Med Chem ; 24(6): 1384-91, 2016 Mar 15.
Article in English | MEDLINE | ID: mdl-26897089

ABSTRACT

Mineralocorticoid receptor (MR) antagonists continue to be a prevalent area of research in the pharmaceutical industry. Herein we report the discovery of various spirooxindole and dibenzoxazepine constructs as potent MR antagonists. SAR analysis of our spirooxindole hit led to highly potent compounds containing polar solubilizing groups, which interact with the helix-11 region of the MR ligand binding domain (LBD). Various dibenzoxazepine moieties were also prepared in an effort to replace a known dibenzoxepane system which interacts with the hydrophobic region of the MR LBD. In addition, an X-ray crystal structure was obtained from a highly potent compound which was shown to exhibit both partial agonist and antagonist modes of action against MR.


Subject(s)
Dibenzoxazepines/pharmacology , Indoles/pharmacology , Mineralocorticoid Receptor Antagonists/pharmacology , Receptors, Mineralocorticoid/metabolism , Spiro Compounds/pharmacology , Crystallography, X-Ray , Dibenzoxazepines/chemical synthesis , Dibenzoxazepines/chemistry , Dose-Response Relationship, Drug , Humans , Indoles/chemical synthesis , Indoles/chemistry , Mineralocorticoid Receptor Antagonists/chemical synthesis , Mineralocorticoid Receptor Antagonists/chemistry , Models, Molecular , Molecular Structure , Spiro Compounds/chemical synthesis , Spiro Compounds/chemistry , Structure-Activity Relationship
4.
J Neurochem ; 118(6): 1016-31, 2011 Sep.
Article in English | MEDLINE | ID: mdl-21736568

ABSTRACT

The EphA4 receptor and its ephrin ligands are involved in astrocytic gliosis following CNS injury. Therefore, a strategy aimed at the blockade of EphA4 signaling could have broad therapeutic interest in brain disorders. We have identified novel small molecule inhibitors of EphA4 kinase in specific enzymatic and cell-based assays. In addition, we have demonstrated in two in vitro models of scratch injury that EphA4 receptor kinase is activated through phosphorylation and is involved in the repopulation of the wound after the scratch. A potent EphA4 kinase inhibitor significantly inhibited wound closure and reduced the accumulation of the reactive astrocytes inside the scratch. We have also shown that after the transient focal cerebral ischemia in rats, a large glial scar is formed by the accumulation of astrocytes and chondroitin sulfate proteoglycan surrounding the infarcted tissue at 7 days and 14 days of reperfusion. EphA4 protein expression is highly up-regulated in the same areas at these time points, supporting its potential role in the glial scar formation and maintenance. Taken together, these results suggest that EphA4 kinase inhibitors might interfere with the astrogliosis reaction and thereby lead to improved neurological outcome after ischemic injury.


Subject(s)
Gliosis/drug therapy , Protein Kinase Inhibitors/therapeutic use , Receptor, EphA4/antagonists & inhibitors , Wounds and Injuries/pathology , Animals , Astrocytes/pathology , Blotting, Western , CHO Cells , Cell Movement/drug effects , Cells, Cultured , Cricetinae , Cricetulus , Gliosis/pathology , Humans , Immunohistochemistry , Ischemic Attack, Transient/pathology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Microscopy, Fluorescence , Rats , Rats, Sprague-Dawley , Small Molecule Libraries , Wound Healing/drug effects
5.
Neurochem Res ; 35(1): 130-42, 2010 Jan.
Article in English | MEDLINE | ID: mdl-19649707

ABSTRACT

In Parkinson's disease substantia nigra neurons degenerate likely due to oxidative damage interacting with genetic risk factors. Here, SH-SY5Y cells expressing wild-type or A53T alpha-synuclein had increased sensitivity to methyl-4-phenylpyridinium iodide (MPP(+)), which induces mitochondrial dysfunction, and 6-hydroxydopamine (6-OHDA), which causes oxidative stress. Edaravone protected only against MPP(+), and EGCG ((-)-epigallocatechin-3-O-gallate) protected only against 6-OHDA. Thus genomic responses to MPP(+) and 6-OHDA in the presence of these antioxidants were analyzed using microarrays. Pathway analysis indicated that MPP(+) activated p53 (P < 0.001) while 6-OHDA induced the Nrf2 antioxidative stress response (P < 0.0001). EGCG was more effective at blocking 6-OHDA-mediated genomic responses, while edaravone was more effective against MPP(+). We identified 32 genes that responded to both toxins except in the presence of an effective anti-oxidant; eight are transcription factors and potentially constitute a stress-response transcriptional network. These data provide insights into the mechanisms of neurotoxicity and identifies genes that might mediate antioxidant efficacy.


Subject(s)
Antioxidants/metabolism , Genome , Mutation , Neuroblastoma/metabolism , Oligonucleotide Array Sequence Analysis , Parkinson Disease/genetics , alpha-Synuclein/genetics , Base Sequence , Blotting, Western , Cell Line, Tumor , DNA Primers , Humans , Neuroblastoma/genetics , Neuroblastoma/pathology
6.
J Neurochem ; 95(2): 406-17, 2005 Oct.
Article in English | MEDLINE | ID: mdl-16092930

ABSTRACT

The ability of cells to control the balance between the generation and quenching of reactive oxygen species is important in combating potentially damaging effects of oxidative stress. One mechanism that cells use to maintain redox homeostasis is the antioxidant response pathway. Antioxidant response elements (AREs) are cis-acting elements located in regulatory regions of antioxidant and phase II detoxification genes. Nuclear factor-erythroid 2 p45-related factor 2 (Nrf2) is a member of the Cap 'n' Collar family of transcription factors that binds to the ARE and regulates the transcription of specific ARE-containing genes such as NAD(P)H:quinone oxidoreductase 1, glutamylcysteine synthetase and heme oxygenase. Activation of Nrf2 results in release from its negative repressor, Kelch-like ECH-associated protein 1 (Keap1), and allows Nrf2 to translocate into the nucleus to induce gene expression. In this study, we demonstrate that increasing Nrf2 activity by various methods, including chemical induction, Nrf2 overexpression or Keap1 siRNA knockdown, protects cells against specific types of oxidative damage. Cells were protected against 6-hydroxydopamine- and 3-morpholinosydnonimine-mediated toxicity but not against 1-methyl-1-4-phenylpyridinium toxicity. As oxidative stress is a hallmark of several neurodegenerative disorders, including Parkinson's disease, pharmacological agents that selectively target the Keap1-Nrf2 pathway may provide a novel neuroprotective strategy for the treatment of these diseases.


Subject(s)
DNA-Binding Proteins/physiology , Oxidative Stress/physiology , Trans-Activators/physiology , 1-Methyl-4-phenylpyridinium/antagonists & inhibitors , 1-Methyl-4-phenylpyridinium/toxicity , Blotting, Western , Cell Survival/drug effects , DNA-Binding Proteins/biosynthesis , Genes, Reporter/genetics , Humans , Hydroquinones/pharmacology , Intracellular Signaling Peptides and Proteins , Kelch-Like ECH-Associated Protein 1 , Luciferases/metabolism , Molsidomine/analogs & derivatives , Molsidomine/toxicity , NF-E2-Related Factor 2 , Oxidopamine/antagonists & inhibitors , Oxidopamine/toxicity , Plasmids/genetics , Proteins/antagonists & inhibitors , Proteins/physiology , RNA, Small Interfering/pharmacology , Reactive Oxygen Species/metabolism , Reverse Transcriptase Polymerase Chain Reaction , Signal Transduction/drug effects , Signal Transduction/physiology , Trans-Activators/biosynthesis
7.
J Hazard Mater ; 106(2-3): 133-7, 2004 Jan 30.
Article in English | MEDLINE | ID: mdl-15177102

ABSTRACT

A laboratory experiment was conducted to study the effect of metal spiking and incubation on some properties and sequentially extractable chemical pools of some heavy metals (F1, two extractions with 0.1 M Sr(NO3)2; F2, one extraction with 1 M NaOAc (pH 5.0); F3, three extractions with 5% NaOCl (pH 8.5) at 90-95 degrees C; F4, three extractions with 0.2 M oxalic acid + 0.2 M ammonium oxalate + 0.1 M ascorbic acid (pH 3.0); and F5, dissolution of sample residue in HF-HClO4 (residual fraction,) and also 1 M CaCl2 and 0.005 M DTPA extractable heavy metals in sewage sludge. Metal spiking and incubation decreased pH and easily oxidizable organic C content of sludge but increased electrical conductivity. Metal spiking and incubation increased F1 fraction of all heavy metals, F2 fraction of Ni, Pb, Cu, and Cd, F3 fraction of Pb, Cu, and Cd, F4 or reducible fraction of Ni, Cu, and Cd and residual fraction of Zn and Pb, but decreased F2 fraction of Zn, F3 of Zn and Ni, F4 fraction of Zn and F5 fraction of Ni, Cu, and Cd. Metal spiking and incubation increased 1 M CaCl2 and 0.005 M DTPA extractable amounts of all heavy metals in sludge except for 0.005 M DTPA extractable Zn, which registered only very marginal decrease.


Subject(s)
Hazardous Waste/analysis , Metals, Heavy/chemistry , Sewage/chemistry , Biological Availability , Electric Conductivity , Hydrogen-Ion Concentration
8.
Hum Mol Genet ; 12(13): 1591-608, 2003 Jul 01.
Article in English | MEDLINE | ID: mdl-12812986

ABSTRACT

Disrupted-In-Schizophrenia 1 (DISC1) is a novel gene associated with schizophrenia by multiple genetic studies. In order to determine how mutations in DISC1 might cause susceptibility to schizophrenia, we undertook a comprehensive study of the cellular biology of DISC1 in its full-length and disease-associated mutant forms. DISC1 interacts by yeast two-hybrid, mammalian two-hybrid, and co-immunoprecipitation assays with multiple proteins of the centrosome and cytoskeletal system, including MIPT3, MAP1A and NUDEL; proteins which localize receptors to membranes, including alpha-actinin2 and beta4-spectrin; and proteins which transduce signals from membrane receptors, including ATF4 and ATF5. Truncated mutant DISC1 fails to interact with ATF4, ATF5 or NUDEL. Deletion mapping demonstrated that DISC1 has distinct interaction domains: MAP1A interacts via its LC2 domain with the N-terminus of DISC1, whereas MIPT3 and NUDEL bind via their C-terminal domains to the central coiled-coil domain of DISC1, and ATF4/5 bind via their C-terminal domains to the C-terminus of DISC1. In its full-length form, DISC1 protein localizes to predominantly perinuclear punctate structures which extend into neurites in some cells; mutant truncated DISC1, by contrast, is seen in a diffuse pattern throughout the cytoplasm and abundantly in neurites. Both forms co-localize with the centrosomal complex, although truncated less abundantly than full-length DISC1. Although both full-length and mutant DISC1 are found in microtubule fractions, neither form of DISC1 appears to bind directly to microtubules, but rather do so in a MIPT3-dependent fashion that is stabilized by taxol. Based on these data, we propose that DISC1 is a multifunctional protein whose truncation contributes to schizophrenia susceptibility by disrupting intracellular transport, neurite architecture and/or neuronal migration, all of which have been hypothesized to be pathogenic in the schizophrenic brain.


Subject(s)
Centrosome/ultrastructure , Microtubule-Associated Proteins/metabolism , Nerve Tissue Proteins/biosynthesis , Nerve Tissue Proteins/physiology , Serine Endopeptidases/metabolism , Transcription Factors/metabolism , Activating Transcription Factors , Cell Line , Cell Line, Tumor , Centrosome/metabolism , DNA, Complementary/metabolism , Gene Deletion , Gene Library , HeLa Cells , Humans , Immunohistochemistry , Microtubules/metabolism , Models, Biological , Models, Genetic , Neurons/metabolism , Precipitin Tests , Protein Binding , Protein Structure, Tertiary , Schizophrenia/genetics , Signal Transduction , Sindbis Virus/genetics , Subcellular Fractions/metabolism , Tissue Distribution , Transfection , Two-Hybrid System Techniques
9.
Neurobiol Dis ; 9(1): 49-60, 2002 Feb.
Article in English | MEDLINE | ID: mdl-11848684

ABSTRACT

Demonstration that cleavage of both APP and Notch are dependent on the product of the early onset Alzheimer's disease gene, presenilin-1 (PS1), has raised the possibility that Notch function may be altered in AD. This finding also suggests that Notch may be affected by APPgamma-secretase inhibitors under development for the treatment of Alzheimer's disease, as these target PS1. Data that address these questions have been lacking, due to inability to specifically modulate PS1 activity in a system directly relevant to the adult human brain. Using novel highly specific inhibitors of PS1/gamma-secretase, we demonstrate that modulation of PS1 activity in human CNS neurons not only affects Abeta generation, but also has unanticipated effects on Notch and its activity. We demonstrate that intracellular trafficking of Notch in human CNS neurons is altered by inhibition of PS1 and is accompanied by dramatic changes in neurite morphology, consistent with inhibition of Notch activity. These data, together with immunohistochemical evidence of elevation of Notch pathway expression in AD brain, suggest that Notch dysregulation may contribute to the neuritic dystrophy characteristically seen in Alzheimer's disease brain. In addition, they raise the possibility that inhibition of gamma-secretase/PS1 may have clinically beneficial effects on the neuritic pathology of AD, in addition to its expected effect to reduce amyloid burden.


Subject(s)
Endopeptidases/metabolism , Membrane Proteins/metabolism , Neurites/physiology , Receptors, Cell Surface , Transcription Factors , Adaptor Proteins, Signal Transducing , Adult , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Amyloid Precursor Protein Secretases , Animals , Aspartic Acid Endopeptidases , Calcium-Calmodulin-Dependent Protein Kinases/analysis , Carbamates/pharmacology , Dipeptides/pharmacology , Dishevelled Proteins , Endoplasmic Reticulum/metabolism , Glycogen Synthase Kinase 3 , Golgi Apparatus/metabolism , Hippocampus/chemistry , Hippocampus/metabolism , Humans , Macaca mulatta , Membrane Proteins/analysis , Membrane Proteins/antagonists & inhibitors , Membrane Proteins/genetics , Neurites/pathology , Neuroblastoma , Phosphoproteins/analysis , Presenilin-1 , Protease Inhibitors/pharmacology , Receptor, Notch1 , Tumor Cells, Cultured
SELECTION OF CITATIONS
SEARCH DETAIL
...