Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
ChemMedChem ; 7(3): 406-14, 2012 Mar 05.
Article in English | MEDLINE | ID: mdl-22267125
2.
ACS Chem Neurosci ; 2(8): 471-482, 2011 Aug 17.
Article in English | MEDLINE | ID: mdl-21927650

ABSTRACT

Glutamate is the major excitatory transmitter in the mammalian CNS, exerting its effects through both ionotropic and metabotropic glutamate receptors. The metabotropic glutamate receptors (mGlus) belong to family C of the G-protein-coupled receptors (GPCRs). The eight mGlus identified to date are classified into three groups based on their structure, preferred signal transduction mechanisms, and pharmacology (Group I: mGlu(1) and mGlu(5); Group II: mGlu(2) and mGlu(3); Group III: mGlu(4), mGlu(6), mGlu(7), and mGlu(8)). Non-competitive antagonists, also known as negative allosteric modulators (NAMs), of mGlu(5) offer potential therapeutic applications in diseases such as pain, anxiety, gastroesophageal reflux disease (GERD), Parkinson's disease (PD), fragile X syndrome, and addiction. The development of SAR in a (3-cyano-5-fluorophenyl)biaryl series using our functional cell-based assay is described in this communication. Further characterization of a selected compound, 3-fluoro-5-(2-methylbenzo[d]thiazol-5-yl)benzonitrile, in additional cell based assays as well as in vitro assays designed to measure its metabolic stability and protein binding indicated its potential utility as an in vivo tool. Subsequent evaluation of the same compound in a pharmacokinetic study using intraperitoneal dosing in mice showed good exposure in both plasma and brain samples. The compound was efficacious in a mouse marble burying model of anxiety, an assay known to be sensitive to mGlu(5) antagonists. A new operant model of addiction termed operant sensation seeking (OSS) was chosen as a second behavioral assay. The compound also proved efficacious in the OSS model and constitutes the first reported example of efficacy with a small molecule mGlu(5) NAM in this novel assay.

3.
Mol Pharmacol ; 78(6): 1105-23, 2010 Dec.
Article in English | MEDLINE | ID: mdl-20923853

ABSTRACT

Modulators of metabotropic glutamate receptor subtype 5 (mGluR5) may provide novel treatments for multiple central nervous system (CNS) disorders, including anxiety and schizophrenia. Although compounds have been developed to better understand the physiological roles of mGluR5 and potential usefulness for the treatment of these disorders, there are limitations in the tools available, including poor selectivity, low potency, and limited solubility. To address these issues, we developed an innovative assay that allows simultaneous screening for mGluR5 agonists, antagonists, and potentiators. We identified multiple scaffolds that possess diverse modes of activity at mGluR5, including both positive and negative allosteric modulators (PAMs and NAMs, respectively). 3-Fluoro-5-(3-(pyridine-2-yl)-1,2,4-oxadiazol-5-yl)benzonitrile (VU0285683) was developed as a novel selective mGluR5 NAM with high affinity for the 2-methyl-6-(phenylethynyl)-pyridine (MPEP) binding site. VU0285683 had anxiolytic-like activity in two rodent models for anxiety but did not potentiate phencyclidine-induced hyperlocomotor activity. (4-Hydroxypiperidin-1-yl)(4-phenylethynyl)phenyl)methanone (VU0092273) was identified as a novel mGluR5 PAM that also binds to the MPEP site. VU0092273 was chemically optimized to an orally active analog, N-cyclobutyl-6-((3-fluorophenyl)ethynyl)nicotinamide hydrochloride (VU0360172), which is selective for mGluR5. This novel mGluR5 PAM produced a dose-dependent reversal of amphetamine-induced hyperlocomotion, a rodent model predictive of antipsychotic activity. Discovery of structurally and functionally diverse allosteric modulators of mGluR5 that demonstrate in vivo efficacy in rodent models of anxiety and antipsychotic activity provide further support for the tremendous diversity of chemical scaffolds and modes of efficacy of mGluR5 ligands. In addition, these studies provide strong support for the hypothesis that multiple structurally distinct mGluR5 modulators have robust activity in animal models that predict efficacy in the treatment of CNS disorders.


Subject(s)
Anti-Anxiety Agents/pharmacology , Antipsychotic Agents/pharmacology , Psychomotor Agitation/drug therapy , Receptors, Metabotropic Glutamate/chemistry , Receptors, Metabotropic Glutamate/physiology , Allosteric Regulation/drug effects , Allosteric Regulation/physiology , Animals , Anti-Anxiety Agents/chemistry , Anti-Anxiety Agents/therapeutic use , Antipsychotic Agents/chemistry , Antipsychotic Agents/therapeutic use , Cells, Cultured , Cricetinae , Dose-Response Relationship, Drug , HEK293 Cells , Humans , Male , Mice , Motor Activity/drug effects , Motor Activity/physiology , Psychomotor Agitation/physiopathology , Rats , Rats, Sprague-Dawley , Receptor, Metabotropic Glutamate 5
4.
ACS Chem Neurosci ; 1(2): 104-121, 2010.
Article in English | MEDLINE | ID: mdl-21961051

ABSTRACT

Cholinergic transmission in the forebrain is mediated primarily by five subtypes of muscarinic acetylcholine receptors (mAChRs), termed M(1)-M(5). Of the mAChR subtypes, M(1) is among the most heavily expressed in regions that are critical for learning and memory, and has been viewed as the most critical mAChR subtype for memory and attention mechanisms. Unfortunately, it has been difficult to develop selective activators of M(1) and other individual mAChR subtypes, which has prevented detailed studies of the functional roles of selective activation of M(1). Using a functional HTS screen and subsequent diversity-oriented synthesis approach we have discovered a novel series of highly selective M(1) allosteric agonists. These compounds activate M(1) with EC(50) values in the 150 nM to 500 nM range and have unprecedented, clean ancillary pharmacology (no substantial activity at 10µM across a large panel of targets). Targeted mutagenesis revealed a potentially novel allosteric binding site in the third extracellular loop of the M(1) receptor for these allosteric agonists. Optimized compounds, such as VU0357017, provide excellent brain exposure after systemic dosing and have robust in vivo efficacy in reversing scopolamine-induced deficits in a rodent model of contextual fear conditioning. This series of selective M(1) allosteric agonists provides critical research tools to allow dissection of M(1)-mediated effects in the CNS and potential leads for novel treatments for Alzheimer's disease and schizophrenia.

6.
Mol Pharmacol ; 76(2): 356-68, 2009 Aug.
Article in English | MEDLINE | ID: mdl-19407080

ABSTRACT

Previous studies suggest that selective antagonists of specific subtypes of muscarinic acetylcholine receptors (mAChRs) may provide a novel approach for the treatment of certain central nervous system (CNS) disorders, including epileptic disorders, Parkinson's disease, and dystonia. Unfortunately, previously reported antagonists are not highly selective for specific mAChR subtypes, making it difficult to definitively establish the functional roles and therapeutic potential for individual subtypes of this receptor subfamily. The M(1) mAChR is of particular interest as a potential target for treatment of CNS disorders. We now report the discovery of a novel selective antagonist of M(1) mAChRs, termed VU0255035 [N-(3-oxo-3-(4-(pyridine-4-yl)piperazin-1-yl)propyl)-benzo[c][1,2,5]thiadiazole-4 sulfonamide]. Equilibrium radioligand binding and functional studies demonstrate a greater than 75-fold selectivity of VU0255035 for M(1) mAChRs relative to M(2)-M(5). Molecular pharmacology and mutagenesis studies indicate that VU0255035 is a competitive orthosteric antagonist of M(1) mAChRs, a surprising finding given the high level of M(1) mAChR selectivity relative to other orthosteric antagonists. Whole-cell patch-clamp recordings demonstrate that VU0255035 inhibits potentiation of N-methyl-D-aspartate receptor currents by the muscarinic agonist carbachol in hippocampal pyramidal cells. VU0255035 has excellent brain penetration in vivo and is efficacious in reducing pilocarpine-induced seizures in mice. We were surprised to find that doses of VU0255035 that reduce pilocarpine-induced seizures do not induce deficits in contextual freezing, a measure of hippocampus-dependent learning that is disrupted by nonselective mAChR antagonists. Taken together, these data suggest that selective antagonists of M(1) mAChRs do not induce the severe cognitive deficits seen with nonselective mAChR antagonists and could provide a novel approach for the treatment certain of CNS disorders.


Subject(s)
Hippocampus/metabolism , Learning/physiology , Muscarinic Antagonists/metabolism , Receptor, Muscarinic M1/metabolism , Seizures/metabolism , Animals , Binding, Competitive/drug effects , CHO Cells , Cricetinae , Cricetulus , Dose-Response Relationship, Drug , Electrophysiology , Inhibitory Concentration 50 , Male , Mice , Molecular Structure , Muscarinic Antagonists/chemistry , Patch-Clamp Techniques , Rats , Rats, Sprague-Dawley , Sensitivity and Specificity , Sulfonamides/antagonists & inhibitors , Sulfonamides/pharmacokinetics , Thiadiazoles/antagonists & inhibitors , Thiadiazoles/pharmacokinetics
7.
J Neurosci ; 28(41): 10422-33, 2008 Oct 08.
Article in English | MEDLINE | ID: mdl-18842902

ABSTRACT

Recent studies suggest that subtype-selective activators of M(1)/M(4) muscarinic acetylcholine receptors (mAChRs) may offer a novel approach for the treatment of psychotic symptoms associated with schizophrenia and Alzheimer's disease. Previously developed muscarinic agonists have provided clinical data in support of this hypothesis, but failed in clinical development because of a lack of true subtype specificity and adverse effects associated with activation of other mAChR subtypes. We now report characterization of a novel highly selective agonist for the M(1) receptor with no agonist activity at any of the other mAChR subtypes, termed TBPB [1-(1'-2-methylbenzyl)-1,4'-bipiperidin-4-yl)-1H-benzo[d]imidazol-2(3H)-one]. Mutagenesis and molecular pharmacology studies revealed that TBPB activates M(1) through an allosteric site rather than the orthosteric acetylcholine binding site, which is likely critical for its unprecedented selectivity. Whole-cell patch-clamp recordings demonstrated that activation of M(1) by TBPB potentiates NMDA receptor currents in hippocampal pyramidal cells but does not alter excitatory or inhibitory synaptic transmission, responses thought to be mediated by M(2) and M(4). TBPB was efficacious in models predictive of antipsychotic-like activity in rats at doses that did not produce catalepsy or peripheral adverse effects of other mAChR agonists. Finally, TBPB had effects on the processing of the amyloid precursor protein toward the non-amyloidogenic pathway and decreased Abeta production in vitro. Together, these data suggest that selective activation of M(1) may provide a novel approach for the treatment of symptoms associated with schizophrenia and Alzheimer's disease.


Subject(s)
Allosteric Site/physiology , Amyloid/metabolism , Antipsychotic Agents/pharmacology , Benzimidazoles/pharmacology , Piperidines/pharmacology , Protein Processing, Post-Translational/drug effects , Receptor, Muscarinic M1/chemistry , Receptor, Muscarinic M1/metabolism , Amyloid beta-Protein Precursor/metabolism , Animals , Benzimidazoles/administration & dosage , Benzimidazoles/metabolism , CHO Cells , Cricetinae , Cricetulus , Dose-Response Relationship, Drug , Electric Conductivity , Hippocampus/cytology , Hippocampus/drug effects , Hippocampus/physiology , In Vitro Techniques , Male , Patch-Clamp Techniques , Piperidines/administration & dosage , Piperidines/metabolism , Pyramidal Cells/drug effects , Pyramidal Cells/physiology , Rats , Rats, Sprague-Dawley , Receptor, Muscarinic M1/agonists , Receptor, Muscarinic M1/drug effects , Receptors, Dopamine D2/metabolism , Receptors, N-Methyl-D-Aspartate/physiology , Synaptic Transmission/drug effects , Transfection
SELECTION OF CITATIONS
SEARCH DETAIL
...