Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 74
Filter
1.
Nano Lett ; 24(8): 2567-2573, 2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38367281

ABSTRACT

The boundary between CaRuO3 and CaMnO3 is an ideal test bed for emergent magnetic ground states stabilized through interfacial electron interactions. In this system, nominally antiferromagnetic and paramagnetic materials combine to yield interfacial ferromagnetism in CaMnO3 due to electron leakage across the interface. In this work, we show that the crystal symmetry at the surface is a critical factor determining the nature of the interfacial interactions. Specifically, by growing CaRuO3/CaMnO3 heterostructures along the (111) instead of the (001) crystallographic axis, we achieve a 3-fold enhancement of the magnetization and involve the CaRuO3 layers in the ferromagnetism, which now spans both constituent materials. The stabilization of a net magnetic moment in CaRuO3 through strain effects has been long-sought but never consistently achieved, and our observations demonstrate the importance of interface engineering in the development of new functional heterostructures.

2.
Cell Rep Methods ; 3(7): 100535, 2023 07 24.
Article in English | MEDLINE | ID: mdl-37533651

ABSTRACT

The identification and characterization of genomic safe harbor sites (GSHs) can facilitate consistent transgene activity with minimal disruption to the host cell genome. We combined computational genome annotation and chromatin structure analysis to predict the location of four GSHs in the human blood fluke, Schistosoma mansoni, a major infectious pathogen of the tropics. A transgene was introduced via CRISPR-Cas-assisted homology-directed repair into one of the GSHs in the egg of the parasite. Gene editing efficiencies of 24% and transgene-encoded fluorescence of 75% of gene-edited schistosome eggs were observed. The approach advances functional genomics for schistosomes by providing a tractable path for generating transgenics using homology-directed, repair-catalyzed transgene insertion. We also suggest that this work will serve as a roadmap for the development of similar approaches in helminths more broadly.


Subject(s)
Gene Editing , Schistosoma mansoni , Animals , Humans , Schistosoma mansoni/genetics , Transgenes/genetics , Animals, Genetically Modified/genetics
3.
PLoS Negl Trop Dis ; 16(4): e0010343, 2022 04.
Article in English | MEDLINE | ID: mdl-35417453

ABSTRACT

BACKGROUND: Schistosomiasis, a major cause of pulmonary arterial hypertension (PAH) worldwide, is most clearly described complicating infection by one species, Schistosoma mansoni. Controlled exposure of mice can be used to induce Type 2 inflammation-dependent S. mansoni pulmonary hypertension (PH). We sought to determine if another common species, S. japonicum, can also cause experimental PH. METHODS: Schistosome eggs were obtained from infected mice, and administered by intraperitoneal sensitization followed by intravenous challenge to experimental mice, which underwent right heart catheterization and tissue analysis. RESULTS: S. japonicum sensitized and challenged mice developed PH, which was milder than that following S. mansoni sensitization and challenge. The degree of pulmonary vascular remodeling and Type 2 inflammation in the lungs was similarly proportionate. Cross-sensitization revealed that antigens from either species are sufficient to sensitize for intravenous challenge with either egg, and the degree of PH severity depended on primarily the species used for intravenous challenge. Compared to a relatively uniform distribution of S. mansoni eggs, S. japonicum eggs were observed in clusters in the lungs. CONCLUSIONS: S. japonicum can induce experimental PH, which is milder than that resulting from comparable S. mansoni exposure. This difference may result from the distribution of eggs in the lungs, and is independent of which species is used for sensitization. This result is consistent with the clearer association between S. mansoni infection and the development of schistosomiasis-associated PAH in humans.


Subject(s)
Hypertension, Pulmonary , Schistosoma japonicum , Schistosomiasis , Animals , Hypertension, Pulmonary/etiology , Inflammation/complications , Mice , Schistosoma mansoni , Schistosomiasis/complications
4.
Nat Commun ; 13(1): 977, 2022 02 21.
Article in English | MEDLINE | ID: mdl-35190553

ABSTRACT

Some snails act as intermediate hosts (vectors) for parasitic flatworms (flukes) that cause neglected tropical diseases, such as schistosomiases. Schistosoma haematobium is a blood fluke that causes urogenital schistosomiasis and induces bladder cancer and increased risk of HIV infection. Understanding the molecular biology of the snail and its relationship with the parasite could guide development of an intervention approach that interrupts transmission. Here, we define the genome for a key intermediate host of S. haematobium-called Bulinus truncatus-and explore protein groups inferred to play an integral role in the snail's biology and its relationship with the schistosome parasite. Bu. truncatus shared many orthologous protein groups with Biomphalaria glabrata-the key snail vector for S. mansoni which causes hepatointestinal schistosomiasis in people. Conspicuous were expansions in signalling and membrane trafficking proteins, peptidases and their inhibitors as well as gene families linked to immune response regulation, such as a large repertoire of lectin-like molecules. This work provides a sound basis for further studies of snail-parasite interactions in the search for targets to block schistosomiasis transmission.


Subject(s)
Bulinus/genetics , Cell Nucleus/genetics , Disease Vectors , Schistosomiasis haematobia/transmission , Animals , Bulinus/parasitology , Genome , Host-Parasite Interactions/genetics , Host-Parasite Interactions/immunology , Humans , Schistosoma haematobium/immunology , Schistosomiasis haematobia/parasitology
5.
PLoS Pathog ; 18(2): e1010288, 2022 02.
Article in English | MEDLINE | ID: mdl-35167626

ABSTRACT

Urogenital schistosomiasis is caused by the blood fluke Schistosoma haematobium and is one of the most neglected tropical diseases worldwide, afflicting > 100 million people. It is characterised by granulomata, fibrosis and calcification in urogenital tissues, and can lead to increased susceptibility to HIV/AIDS and squamous cell carcinoma of the bladder. To complement available treatment programs and break the transmission of disease, sound knowledge and understanding of the biology and ecology of S. haematobium is required. Hybridisation/introgression events and molecular variation among members of the S. haematobium-group might effect important biological and/or disease traits as well as the morbidity of disease and the effectiveness of control programs including mass drug administration. Here we report the first chromosome-contiguous genome for a well-defined laboratory line of this blood fluke. An exploration of this genome using transcriptomic data for all key developmental stages allowed us to refine gene models (including non-coding elements) and annotations, discover 'new' genes and transcription profiles for these stages, likely linked to development and/or pathogenesis. Molecular variation within S. haematobium among some geographical locations in Africa revealed unique genomic 'signatures' that matched species other than S. haematobium, indicating the occurrence of introgression events. The present reference genome (designated Shae.V3) and the findings from this study solidly underpin future functional genomic and molecular investigations of S. haematobium and accelerate systematic, large-scale population genomics investigations, with a focus on improved and sustained control of urogenital schistosomiasis.


Subject(s)
Genetic Variation , Genome, Protozoan , Schistosoma haematobium/genetics , Schistosomiasis haematobia/parasitology , Transcriptome , Animals , Chromosomes/parasitology , Genes, Protozoan , Genome , Genome-Wide Association Study , Sequence Analysis, DNA
6.
Int J Mol Sci ; 23(2)2022 Jan 06.
Article in English | MEDLINE | ID: mdl-35054816

ABSTRACT

The efficiency of the RNA-guided AsCas12a nuclease of Acidaminococcus sp. was compared with SpCas9 from Streptococcus pyogenes, for functional genomics in Schistosoma mansoni. We deployed optimized conditions for the ratio of guide RNAs to the nuclease, donor templates, and electroporation parameters, to target a key schistosome enzyme termed omega-1. Programmed cleavages catalyzed by Cas12a and Cas9 resulted in staggered- and blunt-ended strand breaks, respectively. AsCas12a was more efficient than SpCas9 for gene knockout, as determined by TIDE analysis. CRISPResso2 analysis confirmed that most mutations were deletions. Knockout efficiency of both nucleases markedly increased in the presence of single-stranded oligodeoxynucleotide (ssODN) template. With AsCas12a, ssODNs representative of both the non-CRISPR target (NT) and target (T) strands were tested, resulting in KO efficiencies of 15.67, 28.71, and 21.43% in the SpCas9 plus ssODN, AsCas12a plus NT-ssODN, and AsCas12a plus T-ssODN groups, respectively. Trans-cleavage against the ssODNs by activated AsCas12a was not apparent in vitro. SpCas9 catalyzed more precise transgene insertion, with knock-in efficiencies of 17.07% for the KI_Cas9 group, 14.58% for KI_Cas12a-NT-ssODN, and 12.37% for KI_Cas12a-T-ssODN. Although AsCas12a induced fewer mutations per genome than SpCas9, the phenotypic impact on transcription and expression of omega-1 was similar for both nucleases.


Subject(s)
Gene Knockout Techniques , Genes, Protozoan , Genetic Loci , RNA, Guide, Kinetoplastida/metabolism , Recombinational DNA Repair , Ribonucleases/genetics , Schistosoma mansoni/genetics , Animals , Base Sequence , CRISPR-Cas Systems/genetics , Catalysis , Female , Gene Dosage , Humans , Mutation/genetics , Oligonucleotides/metabolism , Recombinational DNA Repair/genetics , Reference Standards , Transcription, Genetic , Transgenes
10.
Front Microbiol ; 12: 726465, 2021.
Article in English | MEDLINE | ID: mdl-34539616

ABSTRACT

On entering the mammalian host, schistosomes transition from a freshwater environment where resources are scarce, to an environment where there is an unlimited supply of glucose, their preferred energy substrate. Adult schistosome glycolytic activity consumes almost five times the parasite's dry weight in glucose per day to meet the parasite's energy demands, and the schistosome glycolytic enzymes and mechanisms for glucose uptake that sustain this metabolic activity have previously been identified. However, little is known of the parasite processes that regulate schistosome glucose metabolism. We previously described the Schistosoma mansoni ortholog of 5' AMP-Activated Protein Kinase (AMPK), which is a central regulator of energy metabolism in eukaryotes, and characterized the developmental regulation of its expression and activity in S. mansoni. Here we sought to explore the function of AMPK in schistosomes and test whether it regulates parasite glycolysis. Adult schistosomes mounted a compensatory response to chemical inhibition of AMPK α, resulting in increased AMPK α protein abundance and activity. RNAi inhibition of AMPK α expression, however, suggests that AMPK α is not required for adult schistosome viability in vitro. Larval schistosomula, on the other hand, are sensitive to chemical AMPK α inhibition, and this correlates with inactivity of the AMPK α gene in this life cycle stage that precludes a compensatory response to AMPK inhibition. While our data indicate that AMPK is not essential in adult schistosomes, our results suggest that AMPK regulates adult worm glycogen stores, influencing both glycogen utilization and synthesis. AMPK may therefore play a role in the ability of adult schistosomes to survive in vivo stressors such as transient glucose deprivation and oxidative stress. These findings suggest that AMPK warrants further investigation as a potential drug target, especially for interventions aimed at preventing establishment of a schistosome infection.

11.
J Biol Chem ; 294(41): 15082-15094, 2019 10 11.
Article in English | MEDLINE | ID: mdl-31431507

ABSTRACT

Heat shock proteins (Hsps) are highly conserved molecular chaperones that are ubiquitously expressed in all species to aid the solubilization of misfolded proteins, protein degradation, and transport. Elevated levels of Hsp70 have been found in the sputum, serum, and bronchoalveolar lavage (BAL) fluid of asthma patients and are known to correlate with disease severity. However, the function of Hsp70 in allergic airway inflammation has remained largely unknown. This study aimed to determine the role of Hsp70 in airway inflammation and remodeling using a mouse model of allergic airway inflammation. WT and Hsp70 double-knockout (Hsp70.1/.3-/-) mice were sensitized and challenged intratracheally with Schistosoma mansoni soluble egg antigens (SEAs) to induce robust Th2 responses and airway inflammation in the lungs. The lack of Hsp70 resulted in a significant reduction in airway inflammation, goblet cell hyperplasia, and Th2 cytokine production, including IL-4, IL-5, and IL-13. An analysis of the BAL fluid suggested that Hsp70 is critically required for eosinophilic infiltration, collagen accumulation, and Th2 cytokine production in allergic airways. Furthermore, our bone marrow (BM) transfer studies show that SEA-induced airway inflammation, goblet cell hyperplasia, and Th2 cytokine production were attenuated in WT mice that were reconstituted with Hsp70-deficient BM, but these effects were not attenuated in Hsp70-deficient mice that were reconstituted with WT BM. Together, these studies identify a pathogenic role for Hsp70 in hematopoietic cells during allergic airway inflammation; this illustrates the potential utility of targeting Hsp70 to alleviate allergen-induced Th2 cytokines, goblet cell hyperplasia, and airway inflammation.


Subject(s)
Goblet Cells/pathology , HSP70 Heat-Shock Proteins/metabolism , Hypersensitivity/metabolism , Hypersensitivity/pathology , Lung/pathology , Animals , Cytokines/biosynthesis , Disease Models, Animal , Gene Regulatory Networks , Hyperplasia/metabolism , Hypersensitivity/genetics , Hypersensitivity/immunology , Lung/immunology , Lung/metabolism , Mice , Th2 Cells/immunology
12.
Elife ; 82019 01 15.
Article in English | MEDLINE | ID: mdl-30644357

ABSTRACT

CRISPR/Cas9-based genome editing has yet to be reported in species of the Platyhelminthes. We tested this approach by targeting omega-1 (ω1) of Schistosoma mansoni as proof of principle. This secreted ribonuclease is crucial for Th2 polarization and granuloma formation. Schistosome eggs were exposed to Cas9 complexed with guide RNA complementary to ω1 by electroporation or by transduction with lentiviral particles. Some eggs were also transfected with a single stranded donor template. Sequences of amplicons from gene-edited parasites exhibited Cas9-catalyzed mutations including homology directed repaired alleles, and other analyses revealed depletion of ω1 transcripts and the ribonuclease. Gene-edited eggs failed to polarize Th2 cytokine responses in macrophage/T-cell co-cultures, while the volume of pulmonary granulomas surrounding ω1-mutated eggs following tail-vein injection into mice was vastly reduced. Knock-out of ω1 and the diminished levels of these cytokines following exposure showcase the novel application of programmed gene editing for functional genomics in schistosomes.


Subject(s)
Gene Editing , Ribonucleases/genetics , Schistosoma mansoni/enzymology , Schistosoma mansoni/genetics , Animals , Base Sequence , CRISPR-Cas Systems/genetics , Cell Line , Chromosomes/genetics , DNA Repair/genetics , Exons/genetics , Gene Expression Regulation , Genetic Loci , Granuloma/pathology , Homologous Recombination/genetics , Humans , Inflammation/pathology , Lung/parasitology , Lung/pathology , Mice , Mutation/genetics , Ovum/enzymology , RNA, Messenger/genetics , RNA, Messenger/metabolism , Th2 Cells/immunology , Transgenes
13.
Am J Manag Care ; 24(12): 566, 2018 12.
Article in English | MEDLINE | ID: mdl-30586490

ABSTRACT

The National Committee for Quality Assurance urges socioeconomic risk adjustment to payments, not quality measures.


Subject(s)
Medicare Part C , Risk Adjustment , Social Class , Humans , Quality Assurance, Health Care , Risk Adjustment/methods , United States
14.
PLoS Negl Trop Dis ; 10(10): e0005022, 2016 Oct.
Article in English | MEDLINE | ID: mdl-27764112

ABSTRACT

Schistosomiasis remains a health burden in many parts of the world. The complex life cycle of Schistosoma parasites and the economic and societal conditions present in endemic areas make the prospect of eradication unlikely in the foreseeable future. Continued and vigorous research efforts must therefore be directed at this disease, particularly since only a single World Health Organization (WHO)-approved drug is available for treatment. The National Institutes of Health (NIH)-National Institute of Allergy and Infectious Diseases (NIAID) Schistosomiasis Resource Center (SRC) at the Biomedical Research Institute provides investigators with the critical raw materials needed to carry out this important research. The SRC makes available, free of charge (including international shipping costs), not only infected host organisms but also a wide array of molecular reagents derived from all life stages of each of the three main human schistosome parasites. As the field of schistosomiasis research rapidly advances, it is likely to become increasingly reliant on omics, transgenics, epigenetics, and microbiome-related research approaches. The SRC has and will continue to monitor and contribute to advances in the field in order to support these research efforts with an expanding array of molecular reagents. In addition to providing investigators with source materials, the SRC has expanded its educational mission by offering a molecular techniques training course and has recently organized an international schistosomiasis-focused meeting. This review provides an overview of the materials and services that are available at the SRC for schistosomiasis researchers, with a focus on updates that have occurred since the original overview in 2008.


Subject(s)
Biomedical Research , National Institute of Allergy and Infectious Diseases (U.S.) , Schistosoma , Schistosomiasis , Animals , Biological Specimen Banks , Humans , National Institute of Allergy and Infectious Diseases (U.S.)/statistics & numerical data , United States , World Health Organization
15.
PLoS One ; 11(7): e0158050, 2016.
Article in English | MEDLINE | ID: mdl-27389696

ABSTRACT

The pregnancy-specific glycoproteins (PSGs) are a family of proteins secreted by the syncytiotrophoblast of the placenta and are the most abundant trophoblastic proteins in maternal blood during the third trimester. The human PSG family consists of 10 protein-coding genes, some of which have a possible role in maintaining maternal immune tolerance to the fetus. PSG9 was reported as a potential predictive biomarker of pre-eclampsia, a serious complication of pregnancy that has been related to immunological dysfunction at the fetal-maternal interface. Therefore, we hypothesized that PSG9 may have an immunoregulatory role during pregnancy. We found that PSG9 binds to LAP and activates the latent form of TGF-ß1. In addition, PSG9 induces the secretion of TGF-ß1 from macrophages but not from CD4+ T-cells. TGF-ß1 is required for the ex vivo differentiation of regulatory T-cells and, consistent with the ability of PSG9 to activate this cytokine, we observed that PSG9 induces the differentiation of FoxP3+ regulatory T-cells from naïve murine and human T-cells. Cytokines that are associated with inflammatory responses were also reduced in the supernatants of T-cells treated with PSG9, suggesting that PSG9, through its activation of TGFß-1, could be a potent inducer of immune tolerance.


Subject(s)
Forkhead Transcription Factors/metabolism , Pregnancy-Specific beta 1-Glycoproteins/metabolism , T-Lymphocytes, Regulatory/cytology , Transforming Growth Factor beta1/metabolism , Animals , Cell Differentiation , Chemokines/metabolism , Female , Humans , Immune System , Inflammation , Kinetics , Mice , Mice, Inbred C57BL , Mice, Transgenic , Pregnancy , Surface Plasmon Resonance
16.
Nat Immunol ; 17(5): 538-44, 2016 May.
Article in English | MEDLINE | ID: mdl-27043413

ABSTRACT

Acidic mammalian chitinase (AMCase) is known to be induced by allergens and helminths, yet its role in immunity is unclear. Using AMCase-deficient mice, we show that AMCase deficiency reduced the number of group 2 innate lymphoid cells during allergen challenge but was not required for establishment of type 2 inflammation in the lung in response to allergens or helminths. In contrast, AMCase-deficient mice showed a profound defect in type 2 immunity following infection with the chitin-containing gastrointestinal nematodes Nippostrongylus brasiliensis and Heligmosomoides polygyrus bakeri. The impaired immunity was associated with reduced mucus production and decreased intestinal expression of the signature type 2 response genes Il13, Chil3, Retnlb, and Clca1. CD103(+) dendritic cells, which regulate T cell homing, were also reduced in mesenteric lymph nodes of infected AMCase-deficient mice. Thus, AMCase functions as a critical initiator of protective type 2 responses to intestinal nematodes but is largely dispensable for allergic responses in the lung.


Subject(s)
Chitinases/immunology , Gastrointestinal Tract/immunology , Immunity/immunology , Strongylida Infections/immunology , Animals , Chitinases/genetics , Chitinases/metabolism , Chloride Channels/genetics , Chloride Channels/immunology , Chloride Channels/metabolism , Flow Cytometry , Gastrointestinal Tract/metabolism , Gastrointestinal Tract/parasitology , Gene Expression/immunology , Hormones, Ectopic/genetics , Hormones, Ectopic/immunology , Hormones, Ectopic/metabolism , Host-Parasite Interactions/immunology , Hypersensitivity/genetics , Hypersensitivity/immunology , Hypersensitivity/metabolism , Immunity/genetics , Intercellular Signaling Peptides and Proteins , Interleukin-13/genetics , Interleukin-13/immunology , Interleukin-13/metabolism , Lectins/genetics , Lectins/immunology , Lectins/metabolism , Lung/immunology , Lung/metabolism , Lung/pathology , Mice, Inbred C57BL , Mice, Knockout , Microscopy, Fluorescence , Nematospiroides dubius/immunology , Nematospiroides dubius/physiology , Nippostrongylus/immunology , Nippostrongylus/physiology , Reverse Transcriptase Polymerase Chain Reaction , Strongylida Infections/metabolism , Strongylida Infections/parasitology , beta-N-Acetylhexosaminidases/genetics , beta-N-Acetylhexosaminidases/immunology , beta-N-Acetylhexosaminidases/metabolism
17.
J Pathol ; 239(3): 344-54, 2016 07.
Article in English | MEDLINE | ID: mdl-27125685

ABSTRACT

Persistent or dysregulated IL-13 responses are key drivers of fibrosis in multiple organ systems, and this identifies this cytokine as an important therapeutic target. Nevertheless, the mechanisms by which IL-13 blockade leads to the amelioration of fibrosis remain unclear. Because IFN-γ exhibits potent anti-fibrotic activity, and IL-4Rα signalling antagonizes IFN-γ effector function, compensatory increases in IFN-γ activity following IL-13/IL-4Rα blockade might contribute to the reduction in fibrosis. To investigate the role of IFN-γ, we developed novel IL-13(-/-) /IFN-γ(-/-) double cytokine-deficient mice and examined disease progression in models of type 2-driven fibrosis. As predicted, we showed that fibrosis in the lung and liver are both highly dependent on IL-13. We also observed increased IFN-γ production and inflammatory activity in the tissues of IL-13-deficient mice. Surprisingly, however, an even greater reduction in fibrosis was observed in IL-13/IFN-γ double deficient mice, most notably in the livers of mice chronically infected with Schistosoma mansoni. The increased protection was associated with marked decreases in Tgfb1, Mmp12, and Timp1 mRNA expression in the tissues; reduced inflammation; and decreased expression of important pro-inflammatory mediators such as TNF-α. Experiments conducted with neutralizing monoclonal antibodies to IL-13 and IFN-γ validated the findings with the genetically deficient mice. Together, these studies demonstrate that the reduction in fibrosis observed when IL-13 signalling is suppressed is not dependent on increased IFN-γ activity. Instead, by reducing compensatory increases in type 1-associated inflammation, therapeutic strategies that block IFN-γ and IL-13 activity simultaneously can confer greater protection from progressive fibrosis than IL-13 blockade alone. Published 2016. This article is a U.S. Government work and is in the public domain in the USA.


Subject(s)
Interferon-gamma/genetics , Interleukin-13/genetics , Liver Cirrhosis/prevention & control , Pulmonary Fibrosis/prevention & control , Schistosoma mansoni/immunology , Schistosomiasis mansoni/prevention & control , Animals , Antibodies, Neutralizing , Female , Granuloma , Humans , Inflammation , Interferon-gamma/metabolism , Interleukin-13/metabolism , Liver/metabolism , Liver/pathology , Liver Cirrhosis/immunology , Liver Cirrhosis/pathology , Lung/metabolism , Lung/pathology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Pulmonary Fibrosis/immunology , Pulmonary Fibrosis/pathology , Schistosomiasis mansoni/parasitology , Schistosomiasis mansoni/pathology , Signal Transduction , Tumor Necrosis Factor-alpha/genetics , Tumor Necrosis Factor-alpha/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...