Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Genom ; 3(11): 100424, 2023 Nov 08.
Article in English | MEDLINE | ID: mdl-38020976

ABSTRACT

Although lineage-specific genes have been identified in the mammary gland, little is known about the contribution of the 3D genome organization to gene regulation in the epithelium. Here, we describe the chromatin landscape of the three major epithelial subsets through integration of long- and short-range chromatin interactions, accessibility, histone modifications, and gene expression. While basal genes display exquisite lineage specificity via distal enhancers, luminal-specific genes show widespread promoter priming in basal cells. Cell specificity in luminal progenitors is largely mediated through extensive chromatin interactions with super-enhancers in gene-body regions in addition to interactions with polycomb silencer elements. Moreover, lineage-specific transcription factors appear to be controlled through cell-specific chromatin interactivity. Finally, chromatin accessibility rather than interactivity emerged as a defining feature of the activation of quiescent basal stem cells. This work provides a comprehensive resource for understanding the role of higher-order chromatin interactions in cell-fate specification and differentiation in the adult mouse mammary gland.

3.
Nat Commun ; 13(1): 4739, 2022 08 12.
Article in English | MEDLINE | ID: mdl-35961968

ABSTRACT

CRISPR technologies have advanced cancer modelling in mice, but CRISPR activation (CRISPRa) methods have not been exploited in this context. We establish a CRISPRa mouse (dCas9a-SAMKI) for inducing gene expression in vivo and in vitro. Using dCas9a-SAMKI primary lymphocytes, we induce B cell restricted genes in T cells and vice versa, demonstrating the power of this system. There are limited models of aggressive double hit lymphoma. Therefore, we transactivate pro-survival BCL-2 in Eµ-MycT/+;dCas9a-SAMKI/+ haematopoietic stem and progenitor cells. Mice transplanted with these cells rapidly develop lymphomas expressing high BCL-2 and MYC. Unlike standard Eµ-Myc lymphomas, BCL-2 expressing lymphomas are highly sensitive to the BCL-2 inhibitor venetoclax. We perform genome-wide activation screens in these lymphoma cells and find a dominant role for the BCL-2 protein A1 in venetoclax resistance. Here we show the potential of our CRISPRa model for mimicking disease and providing insights into resistance mechanisms towards targeted therapies.


Subject(s)
Clustered Regularly Interspaced Short Palindromic Repeats , Lymphoma , Animals , Bridged Bicyclo Compounds, Heterocyclic/pharmacology , Clustered Regularly Interspaced Short Palindromic Repeats/genetics , Lymphoma/drug therapy , Lymphoma/genetics , Lymphoma/pathology , Mice , Proto-Oncogene Proteins c-bcl-2/genetics , Proto-Oncogene Proteins c-bcl-2/metabolism , Proto-Oncogene Proteins c-myc/metabolism , Sulfonamides
4.
Cell Death Dis ; 12(3): 268, 2021 03 12.
Article in English | MEDLINE | ID: mdl-33712556

ABSTRACT

Targeting cell division by chemotherapy is a highly effective strategy to treat a wide range of cancers. However, there are limitations of many standard-of-care chemotherapies: undesirable drug toxicity, side-effects, resistance and high cost. New small molecules which kill a wide range of cancer subtypes, with good therapeutic window in vivo, have the potential to complement the current arsenal of anti-cancer agents and deliver improved safety profiles for cancer patients. We describe results with a new anti-cancer small molecule, WEHI-7326, which causes cell cycle arrest in G2/M, cell death in vitro, and displays efficacious anti-tumor activity in vivo. WEHI-7326 induces cell death in a broad range of cancer cell lines, including taxane-resistant cells, and inhibits growth of human colon, brain, lung, prostate and breast tumors in mice xenografts. Importantly, the compound elicits tumor responses as a single agent in patient-derived xenografts of clinically aggressive, treatment-refractory neuroblastoma, breast, lung and ovarian cancer. In combination with standard-of-care, WEHI-7326 induces a remarkable complete response in a mouse model of high-risk neuroblastoma. WEHI-7326 is mechanistically distinct from known microtubule-targeting agents and blocks cells early in mitosis to inhibit cell division, ultimately leading to apoptotic cell death. The compound is simple to produce and possesses favorable pharmacokinetic and toxicity profiles in rodents. It represents a novel class of anti-cancer therapeutics with excellent potential for further development due to the ease of synthesis, simple formulation, moderate side effects and potent in vivo activity. WEHI-7326 has the potential to complement current frontline anti-cancer drugs and to overcome drug resistance in a wide range of cancers.


Subject(s)
Antimitotic Agents/pharmacology , Drug Resistance, Neoplasm , Neoplasms/drug therapy , Animals , Antimitotic Agents/pharmacokinetics , Antimitotic Agents/toxicity , Apoptosis/drug effects , Cell Proliferation/drug effects , Female , G2 Phase Cell Cycle Checkpoints/drug effects , Hep G2 Cells , Humans , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Nude , Mitosis/drug effects , Neoplasms/pathology , PC-3 Cells , Rats, Sprague-Dawley , Tumor Burden/drug effects , Xenograft Model Antitumor Assays
5.
Mol Biol Cell ; 32(2): 120-130, 2021 01 15.
Article in English | MEDLINE | ID: mdl-33237836

ABSTRACT

The adenomatous polyposis coli (APC) tumor suppressor protein is associated with the regulation of Wnt signaling; however, APC also controls other cellular processes including the regulation of cell adhesion and migration. The expression of full-length APC in SW480 colorectal cancer cells (SW480+APC) not only reduces Wnt signaling, but increases membrane E-cadherin and restores cell-cell adhesion. This report describes the effects of full-length, wild-type APC (fl-APC) on cell-cell adhesion genes and p120-catenin isoform switching in SW480 colon cancer cells: fl-APC increased the expression of genes implicated in cell-cell adhesion, whereas the expression of negative regulators of E-cadherin was decreased. Analysis of cell-cell adhesion-related proteins in SW480+APC cells revealed an increase in p120-catenin isoform 3A; similarly, depletion of APC altered the p120-catenin protein isoform profile. Expression of ESRP1 (epithelial splice regulatory protein 1) is increased in SW480+APC cells, and its depletion results in reversion to the p120-catenin isoform 1A phenotype and reduced cell-cell adhesion. The ESRP1 transcript is reduced in primary colorectal cancer, and its expression correlates with the level of APC. Pyrvinium pamoate, which inhibits Wnt signaling, promotes ESRP1 expression. We conclude that re-expression of APC restores the cell-cell adhesion gene and posttranscriptional regulatory programs leading to p120-catenin isoform switching and associated changes in cell-cell adhesion.


Subject(s)
Adenomatous Polyposis Coli Protein/metabolism , Catenins/metabolism , Colorectal Neoplasms/metabolism , RNA-Binding Proteins/metabolism , Cell Adhesion , Cell Line, Tumor , Colorectal Neoplasms/genetics , Epithelial Cells/metabolism , Gene Expression Regulation, Neoplastic , Humans , Models, Biological , Protein Isoforms/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Subcellular Fractions/metabolism , Wnt Signaling Pathway , Delta Catenin
SELECTION OF CITATIONS
SEARCH DETAIL
...