Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 78
Filter
Add more filters










Publication year range
1.
Article in English | MEDLINE | ID: mdl-38856765

ABSTRACT

BACKGROUND: Current treatment of major depressive disorder is facing challenges, including a low remission rate, late onset of efficacy, and worsening severity due to comorbid symptoms such as psychosis and cognitive dysfunction. Serotonin (5-HT) neurotransmission is involved in a wide variety of psychiatric diseases and its potential as a drug target continues to attract attention. OBJECTIVES: The present study elucidates the effects of a novel 5-HT modulator, DSP-6745, on depression and its comorbid symptoms. RESULTS: In vitro radioligand binding and functional assays showed that DSP-6745 is a potent inhibitor of 5-HT transporter and 5-HT2A, 5-HT2C, and 5-HT7 receptors. In vivo, DSP-6745 (6.4 and 19.1 mg/kg as free base, p.o.) increased the release of not only 5-HT, norepinephrine, and dopamine, but also glutamate in the medial prefrontal cortex. The results of in vivo mouse phenotypic screening by SmartCube® suggested that DSP-6745 has a behavioral signature combined with antidepressant-, anxiolytic-, and antipsychotic-like signals. A single oral dose of DSP-6745 (6.4 and 19.1 mg/kg) showed rapid antidepressant-like efficacy in the rat forced swim test, even at 24 h post-dosing, and anxiolytic activity in the rat social interaction test. Moreover, DSP-6745 (12.7 mg/kg, p.o.) led to an improvement in the apomorphine-induced prepulse inhibition deficit in rats. In the marmoset object retrieval with detour task, which is used to assess cognitive functions such as attention and behavioral inhibition, DSP-6745 (7.8 mg/kg, p.o.) enhanced cognition. CONCLUSIONS: These data suggest that DSP-6745 is a multimodal 5-HT receptor antagonist and a 5-HT transporter inhibitor and has the potential to be a rapid acting antidepressant with efficacies in mitigating the comorbid symptoms of depression.

2.
Nutr Neurosci ; : 1-14, 2023 Sep 13.
Article in English | MEDLINE | ID: mdl-37704369

ABSTRACT

ABSTRACTKetamine, an N-methyl-D-aspartate receptor antagonist, produces rapid antidepressant effects in patients with treatment-resistant depression. However, owing to the undesirable adverse effects of ketamine, there is an urgent need for developing safer and more effective prophylactic and therapeutic interventions for depression. Preclinical studies have demonstrated that activation of the mechanistic target of rapamycin complex 1 (mTORC1) in the medial prefrontal cortex (mPFC) mediates the rapid antidepressant effects of ketamine. The steroidal alkaloid tomatidine and its glycoside α-tomatine (tomatine) can activate mTORC1 signaling in peripheral tissues/cells. We examined whether tomatidine and tomatine exerted prophylactic and therapeutic antidepressant-like actions via mPFC mTORC1 activation using a mouse model of lipopolysaccharide (LPS)-induced depression. Male mice were intraperitoneally (i.p.) administered tomatidine/tomatine before and after the LPS challenge to test their prophylactic and therapeutic effects, respectively. LPS-induced depression-like behaviors in the tail suspension test (TST) and forced swim test (FST) were significantly reversed by prophylactic and therapeutic tomatidine/tomatine administration. LPS-induced anhedonia in the female urine sniffing test was reversed by prophylactic, but not therapeutic, injection of tomatidine, and by prophylactic and therapeutic administration of tomatine. Intra-mPFC infusion of rapamycin, an mTORC1 inhibitor, blocked the prophylactic and therapeutic antidepressant-like effects of tomatidine/tomatine in TST and FST. Moreover, both tomatidine and tomatine produced antidepressant-like effects in ovariectomized female mice, a model of menopause-associated depression. These results indicate that tomatidine and tomatine exert prophylactic and therapeutic antidepressant-like effects via mTORC1 activation in the mPFC and suggest these compounds as promising candidates for novel prophylactic and therapeutic agents for depression.

3.
Neuropharmacology ; 239: 109672, 2023 11 15.
Article in English | MEDLINE | ID: mdl-37506875

ABSTRACT

Previous studies postulated that chronic administration of varenicline, a partial and full agonist at α4ß2 and α7 nicotinic acetylcholine receptors (nAChRs), respectively, enhances recognition memory. However, whether its acute administration is effective, on which brain region(s) it acts, and in what signaling it is involved, remain unknown. To address these issues, we conducted a novel object recognition test using male C57BL/6J mice, focusing on the medial prefrontal cortex (mPFC), a brain region associated with nicotine-induced enhancement of recognition memory. Systemic administration of varenicline before the training dose-dependently enhanced recognition memory. Intra-mPFC varenicline infusion also enhanced recognition memory, and this enhancement was blocked by intra-mPFC co-infusion of a selective α7, but not α4ß2, nAChR antagonist. Consistent with this, intra-mPFC infusion of a selective α7 nAChR agonist augmented object recognition memory. Furthermore, intra-mPFC co-infusion of U-73122, a phospholipase C (PLC) inhibitor, or 2-aminoethoxydiphenylborane (2-APB), an inositol trisphosphate (IP3) receptor inhibitor, suppressed the varenicline-induced memory enhancement, suggesting that α7 nAChRs may also act as Gq-coupled metabotropic receptors. Additionally, whole-cell recordings from mPFC layer V pyramidal neurons in vitro revealed that varenicline significantly increased the summation of evoked excitatory postsynaptic potentials, and this effect was suppressed by U-73122 or 2-APB. These findings suggest that varenicline might acutely enhance recognition memory via mPFC α7 nAChR stimulation, followed by mPFC neuronal excitation, which is mediated by the activation of PLC and IP3 receptor signaling. Our study provides evidence supporting the potential repositioning of varenicline as a treatment for cognitive impairment.


Subject(s)
Receptors, Nicotinic , alpha7 Nicotinic Acetylcholine Receptor , Mice , Male , Animals , Varenicline/pharmacology , Receptors, Nicotinic/metabolism , Mice, Inbred C57BL , Prefrontal Cortex/metabolism
4.
Sci Rep ; 13(1): 8089, 2023 05 19.
Article in English | MEDLINE | ID: mdl-37208473

ABSTRACT

Stress is one of the critical facilitators for seizure induction in patients with epilepsy. However, the neural mechanisms underlying this facilitation remain poorly understood. Here, we investigated whether noradrenaline (NA) transmission enhanced by stress exposure facilitates the induction of medial prefrontal cortex (mPFC)-originated seizures. In mPFC slices, whole-cell current-clamp recordings revealed that bath application of picrotoxin induced sporadic epileptiform activities (EAs), which consisted of depolarization with bursts of action potentials in layer 5 pyramidal cells. Addition of NA dramatically shortened the latency and increased the number of EAs. Simultaneous whole-cell and field potential recordings revealed that the EAs are synchronous in the mPFC local circuit. Terazosin, but not atipamezole or timolol, inhibited EA facilitation, indicating the involvement of α1 adrenoceptors. Intra-mPFC picrotoxin infusion induced seizures in mice in vivo. Addition of NA substantially shortened the seizure latency, while co-infusion of terazosin into the mPFC inhibited the effect of NA. Finally, acute restraint stress shortened the latency of intra-mPFC picrotoxin infusion-induced seizures, whereas prior infusion of terazosin reversed this stress-induced shortening of seizure latency. Our findings suggest that stress facilitates the induction of mPFC-originated seizures via NA stimulation of α1 adrenoceptors.


Subject(s)
Norepinephrine , Prefrontal Cortex , Rats , Mice , Animals , Rats, Sprague-Dawley , Picrotoxin/pharmacology , Norepinephrine/pharmacology , Prefrontal Cortex/physiology , Seizures/chemically induced , Seizures/drug therapy , Receptors, Adrenergic
5.
JCI Insight ; 8(7)2023 04 10.
Article in English | MEDLINE | ID: mdl-36862514

ABSTRACT

Hypothalamic neurons regulate body homeostasis by sensing and integrating changes in the levels of key hormones and primary nutrients (amino acids, glucose, and lipids). However, the molecular mechanisms that enable hypothalamic neurons to detect primary nutrients remain elusive. Here, we identified l-type amino acid transporter 1 (LAT1) in hypothalamic leptin receptor-expressing (LepR-expressing) neurons as being important for systemic energy and bone homeostasis. We observed LAT1-dependent amino acid uptake in the hypothalamus, which was compromised in a mouse model of obesity and diabetes. Mice lacking LAT1 (encoded by solute carrier transporter 7a5, Slc7a5) in LepR-expressing neurons exhibited obesity-related phenotypes and higher bone mass. Slc7a5 deficiency caused sympathetic dysfunction and leptin insensitivity in LepR-expressing neurons before obesity onset. Importantly, restoring Slc7a5 expression selectively in LepR-expressing ventromedial hypothalamus neurons rescued energy and bone homeostasis in mice deficient for Slc7a5 in LepR-expressing cells. Mechanistic target of rapamycin complex-1 (mTORC1) was found to be a crucial mediator of LAT1-dependent regulation of energy and bone homeostasis. These results suggest that the LAT1/mTORC1 axis in LepR-expressing neurons controls energy and bone homeostasis by fine-tuning sympathetic outflow, thus providing in vivo evidence of the implications of amino acid sensing by hypothalamic neurons in body homeostasis.


Subject(s)
Hypothalamus , Large Neutral Amino Acid-Transporter 1 , Mice , Animals , Large Neutral Amino Acid-Transporter 1/metabolism , Hypothalamus/metabolism , Obesity/metabolism , Neurons/metabolism , Homeostasis/genetics , Mechanistic Target of Rapamycin Complex 1/metabolism
6.
Eur J Pharmacol ; 946: 175653, 2023 May 05.
Article in English | MEDLINE | ID: mdl-36907260

ABSTRACT

3,4-methylenedioxymethamphetamine (MDMA), a recreational drug, induces euphoric sensations and psychosocial effects, such as increased sociability and empathy. Serotonin, also called 5-hydroxytryptamine (5-HT), is a neurotransmitter that has been associated with MDMA-induced prosocial effects. However, the detailed neural mechanisms remain elusive. In the present study, we investigated whether 5-HT neurotransmission in the medial prefrontal cortex (mPFC) and the basolateral nucleus of amygdala (BLA) is involved in MDMA-induced prosocial effects using the social approach test in male ICR mice. Systemic administration of (S)-citalopram, a selective 5-HT transporter inhibitor, before administration of MDMA failed to suppress MDMA-induced prosocial effects. On the other hand, systemic administration of the 5-HT1A receptor antagonist WAY100635, but not 5-HT1B, 5-HT2A, 5-HT2C, or 5-HT4 receptor antagonist, significantly suppressed MDMA-induced prosocial effects. Furthermore, local administration of WAY100635 into the BLA but not into the mPFC suppressed MDMA-induced prosocial effects. Consistent with this finding, intra-BLA MDMA administration significantly increased sociability. Together, these results suggest that MDMA induces prosocial effects through the stimulation of 5-HT1A receptors in the BLA.


Subject(s)
Basolateral Nuclear Complex , N-Methyl-3,4-methylenedioxyamphetamine , Mice , Male , Animals , N-Methyl-3,4-methylenedioxyamphetamine/pharmacology , Receptor, Serotonin, 5-HT1A , Mice, Inbred ICR , Serotonin Antagonists/pharmacology , Serotonin
7.
Neurotherapeutics ; 20(2): 484-501, 2023 03.
Article in English | MEDLINE | ID: mdl-36622634

ABSTRACT

Intracerebroventricular infusion of resolvin E1 (RvE1), a bioactive metabolite derived from eicosapentaenoic acid, exerts antidepressant-like effects in a mouse model of lipopolysaccharide (LPS)-induced depression; these effects are blocked by systemic injection of rapamycin, a mechanistic target of rapamycin complex 1 (mTORC1) inhibitor. Additionally, local infusion of RvE1 into the medial prefrontal cortex (mPFC) or dorsal hippocampal dentate gyrus (DG) produces antidepressant-like effects. To evaluate the potential of RvE1 for clinical use, the present study examined whether treatment with RvE1 via intranasal (i.n.) route, a non-invasive route for effective drug delivery to the brain, produces antidepressant-like effects in LPS-challenged mice using tail suspension and forced swim tests. Intranasal administration of RvE1 significantly attenuated LPS-induced immobility, and these antidepressant-like effects were completely blocked by an AMPA receptor antagonist or L-type voltage-dependent Ca2+ channel blocker. The antidepressant-like effects of both i.n. and intra-mPFC administrations of RvE1 were blocked by intra-mPFC infusion of a neutralizing antibody (nAb) for brain-derived neurotrophic factor (BDNF) or vascular endothelial growth factor (VEGF). Intra-mPFC infusion of rapamycin completely blocked the antidepressant-like effects of both i.n. and intra-mPFC administrations of RvE1 as well as those of intra-mPFC infusion of BDNF and VEGF. Moreover, i.n. RvE1 produced antidepressant-like effects via mTORC1 activation in the mPFC of a mouse model of repeated prednisolone-induced depression. Intra-dorsal DG infusion of BDNF and VEGF nAbs, but not rapamycin, blocked the antidepressant-like effects of i.n. RvE1. These findings suggest that i.n. administration of RvE1 produces antidepressant-like effects through activity-dependent BDNF/VEGF release in the mPFC and dorsal DG, and mTORC1 activation in the mPFC, but not in the dorsal DG. Thus, RvE1 can be a promising candidate for a novel rapid-acting antidepressant.


Subject(s)
Eicosapentaenoic Acid , Vascular Endothelial Growth Factor A , Mice , Animals , Vascular Endothelial Growth Factor A/metabolism , Vascular Endothelial Growth Factor A/pharmacology , Eicosapentaenoic Acid/metabolism , Eicosapentaenoic Acid/pharmacology , Mechanistic Target of Rapamycin Complex 1/metabolism , Mechanistic Target of Rapamycin Complex 1/pharmacology , Brain-Derived Neurotrophic Factor/metabolism , Administration, Intranasal , Lipopolysaccharides/toxicity , Antidepressive Agents/pharmacology , Antidepressive Agents/metabolism , Prefrontal Cortex/metabolism , Depression/drug therapy
8.
Neuropharmacology ; 224: 109335, 2023 02 15.
Article in English | MEDLINE | ID: mdl-36403852

ABSTRACT

The neurotrophic hypothesis of depression proposes that reduced levels of brain-derived neurotrophic factor (BDNF) and vascular endothelial growth factor (VEGF) contribute to neuronal atrophy or loss in the prefrontal cortex (PFC) and hippocampus and impaired hippocampal adult neurogenesis, which are associated with depressive symptoms. Chronic, but acute, treatment with typical monoaminergic antidepressants can at least partially reverse these deficits, in part via induction of BDNF and/or VEGF expression, consistent with their delayed onset of action. Ketamine, an N-methyl-d-aspartate receptor antagonist, exerts rapid and sustained antidepressant effects. Rodent studies have revealed that ketamine rapidly increases BDNF and VEGF release and/or expression in the PFC and hippocampus, which in turn increases the number and function of spine synapses in the PFC and hippocampal neurogenesis. Ketamine also induces the persistent release of insulin-like growth factor 1 (IGF-1) in the PFC of male mice. These neurotrophic effects of ketamine are associated with its rapid and sustained antidepressant effects. In this review, we first provide an overview of the neurotrophic hypothesis of depression and then discuss the role of BDNF, VEGF, IGF-1, and other growth factors (IGF-2 and transforming growth factor-ß1) in the antidepressant effects of ketamine and its enantiomers. This article is part of the Special Issue on 'Ketamine and its Metabolites'.


Subject(s)
Ketamine , Male , Mice , Animals , Ketamine/pharmacology , Ketamine/therapeutic use , Vascular Endothelial Growth Factor A/metabolism , Brain-Derived Neurotrophic Factor/metabolism , Insulin-Like Growth Factor I , Antidepressive Agents/pharmacology , Antidepressive Agents/therapeutic use , Depression
9.
Nat Commun ; 13(1): 7708, 2022 12 22.
Article in English | MEDLINE | ID: mdl-36550097

ABSTRACT

Appropriate processing of reward and aversive information is essential for survival. Although a critical role of serotonergic neurons in the dorsal raphe nucleus (DRN) in reward processing has been shown, the lack of rewarding effects with selective serotonin reuptake inhibitors (SSRIs) implies the presence of a discrete serotonergic system playing an opposite role to the DRN in the processing of reward and aversive stimuli. Here, we demonstrated that serotonergic neurons in the median raphe nucleus (MRN) of mice process reward and aversive information in opposite directions to DRN serotonergic neurons. We further identified MRN serotonergic neurons, including those projecting to the interpeduncular nucleus (5-HTMRN→IPN), as a key mediator of reward and aversive stimuli. Moreover, 5-HT receptors, including 5-HT2A receptors in the interpeduncular nucleus, are involved in the aversive properties of MRN serotonergic neural activity. Our findings revealed an essential function of MRN serotonergic neurons, including 5-HTMRN→IPN, in the processing of reward and aversive stimuli.


Subject(s)
Interpeduncular Nucleus , Serotonergic Neurons , Mice , Animals , Serotonin/physiology , Dorsal Raphe Nucleus/physiology , Receptors, Serotonin
10.
Neurosci Res ; 2022 Oct 19.
Article in English | MEDLINE | ID: mdl-36272561

ABSTRACT

Major depressive disorder, one of the most widespread mental illnesses, brings about enormous individual and socioeconomic consequences. Conventional monoaminergic antidepressants require weeks to months to produce a therapeutic response, and approximately one-third of the patients fail to respond to these drugs and are considered treatment-resistant. Although recent studies have demonstrated that ketamine, an N-methyl-D-aspartate receptor antagonist, produces rapid antidepressant effects in treatment-resistant patients, it also has undesirable side effects. Hence, rapid-acting antidepressants that have fewer adverse effects than ketamine are urgently required. D-series (RvD1-RvD6) and E-series (RvE1-RvE4) resolvins are endogenous lipid mediators derived from docosahexaenoic and eicosapentaenoic acids, respectively. These mediators reportedly play a pivotal role in the resolution of acute inflammation. In this review, we reveal that intracranial infusions of RvD1, RvD2, RvE1, RvE2, and RvE3 produce antidepressant-like effects in various rodent models of depression. Moreover, the behavioral effects of RvD1, RvD2, and RvE1 are mediated by the activation of the mechanistic target of rapamycin complex 1, which is essential for the antidepressant-like actions of ketamine. Finally, we briefly provide our perspective on the possible role of endogenous resolvins in stress resilience.

11.
Drug Res (Stuttg) ; 72(9): 523-533, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36055285

ABSTRACT

Endometriosis is one of the most common gynecological diseases in women of reproductive age. Retrograde menstruation is considered a major reason for the development of endometriosis. The syngeneic transplantation mouse model is an endometriosis animal model that is considered to mimic retrograde menstruation. However, it remains poorly understood which genetic signatures of endometriosis are reflected in this model. Here, we employed an in vivo syngeneic mouse endometriosis model and identified differentially expressed genes (DEGs) between the ectopic and eutopic tissues using microarray analysis. Three gene expression profile datasets, GSE5108, GSE7305, and GSE11691, were downloaded from the Gene Expression Omnibus database and DEGs between ectopic and eutopic tissues from the same patients were identified. Gene ontology analysis of the DEGs revealed that biological processes including cell adhesion, the inflammatory response, the response to mechanical stimulus, cell proliferation, and extracellular matrix organization were enriched in both the model and patients. Of the 195 DEGs common to the model and patients, 154 showed the same expression pattern, and 28 of these 154 DEGs came up when PubMed was searched for each gene along with the terms "endometriosis" and "development". This is the first comparison of the DEGs of the mouse syngeneic endometriosis model and those of patients, and we identified the biological processes common to the model and patients at the transcriptional level. This model may be useful to evaluate the efficacy of drugs which target these biological processes.


Subject(s)
Biological Phenomena , Endometriosis , Humans , Female , Mice , Animals , Gene Expression Profiling , Endometriosis/genetics , Endometriosis/metabolism , Cell Proliferation , Disease Models, Animal
12.
Behav Brain Res ; 432: 113981, 2022 08 26.
Article in English | MEDLINE | ID: mdl-35777550

ABSTRACT

Spatiotemporal patterns of neuronal activity underlying the motivational effect of rotating running wheels (RWs) in rodents remain largely undetermined. Here, we investigated changes of neuronal activity among brain regions associated with motivation across different intensities of motivation for RWs in mice. Daily exposure to RWs gradually increased rotation number, then became stable after approximately 3 weeks. Immunohistochemical analyses revealed that the number of c-Fos (a neuronal activity marker)-positive cells increased in the medial prefrontal cortex (mPFC), core and shell of the nucleus accumbens (NAc), dorsal striatum (Str), and lateral septum (LS) at day 1, day 9, and days 20-24, in a time-dependent manner. Additionally, despite exposure to locked RWs for over 7 days after establishing stable rotation with 3-week RW access, increased c-Fos expression was still observed in most of these brain areas. Furthermore, daily overnight RW access developed stable rotation by day 6, with high and low rotation numbers at the start and end of the overnight session, respectively. The number of c-Fos-positive cells at the start of RW rotation was significantly higher than at the end of RW rotation in most brain regions. Furthermore, after establishing stable rotation, the number of c-Fos-positive cells increased in the mPFC and shell of the NAc of mice that only observed RWs. These findings suggest that the subareas of the mPFC and NAc may be critically involved in the motivational effects of RW rotations.


Subject(s)
Motivation , Motor Activity , Animals , Mice , Motor Activity/physiology , Neurons/metabolism , Nucleus Accumbens , Proto-Oncogene Proteins c-fos/metabolism
13.
Transl Psychiatry ; 12(1): 178, 2022 05 17.
Article in English | MEDLINE | ID: mdl-35577782

ABSTRACT

Ketamine, an N-methyl-D-aspartate receptor antagonist, exerts rapid and sustained antidepressant actions. Preclinical studies demonstrated that the release of brain-derived neurotrophic factor (BDNF) and vascular endothelial growth factor in the medial prefrontal cortex (mPFC) is essential for the antidepressant-like effects of ketamine. However, the role of other neurotrophic factors in the antidepressant-like effects of ketamine has not been fully investigated. Since the intra-mPFC infusion of insulin-like growth factor 1 (IGF-1) reportedly produced antidepressant-like effects, the present study examined the role of endogenous intra-mPFC IGF-1 signaling in the antidepressant-like actions of ketamine. In vivo microdialysis showed that ketamine (10 and 30 mg/kg) significantly increased extracellular IGF-1 levels in the mPFC of male C57BL/6J mice for at least 5 h. Infusion of an IGF-1 neutralizing antibody (nAb; 160 ng/side) into the mPFC 15 min before or 2 h after ketamine injection blocked the antidepressant-like effects of ketamine in three different behavioral paradigms (forced swim, female urine sniffing, and novelty-suppressed feeding tests were conducted 1, 3 and 4 days post-ketamine, respectively). The ketamine-like antidepressant-like actions of the intra-mPFC infusion of BDNF (100 ng/side) and IGF-1 (50 ng/side) respectively were not blocked by co-infused IGF-1 nAb and BDNF nAb (200 ng/side). Moreover, intra-mPFC infusion of IGF-1 nAb 2 h post-ketamine blocked the antidepressant-like effects of ketamine in a murine lipopolysaccharide (LPS)-induced depression model. Intra-mPFC IGF-1 infusion also produced antidepressant-like effects in the LPS-challenged mice via mechanistic target of rapamycin complex 1 activation. These results suggest that persistent release of IGF-1, independently of BDNF, in the mPFC is essential for the antidepressant-like actions of ketamine.


Subject(s)
Insulin-Like Growth Factor I , Ketamine , Prefrontal Cortex , Animals , Antidepressive Agents/metabolism , Antidepressive Agents/pharmacology , Brain-Derived Neurotrophic Factor/metabolism , Depression/drug therapy , Depression/metabolism , Female , Insulin-Like Growth Factor I/drug effects , Insulin-Like Growth Factor I/metabolism , Ketamine/pharmacology , Lipopolysaccharides/metabolism , Male , Mice , Mice, Inbred C57BL , Prefrontal Cortex/drug effects , Prefrontal Cortex/metabolism , Vascular Endothelial Growth Factor A
14.
Stem Cells ; 40(4): 411-422, 2022 04 29.
Article in English | MEDLINE | ID: mdl-35304894

ABSTRACT

Extracellular signal-regulated kinase 5 (Erk5) belongs to the mitogen-activated protein kinase (MAPK) family. Previously, we demonstrated that Erk5 directly phosphorylates Smad-specific E3 ubiquitin protein ligase 2 (Smurf2) at Thr249 (Smurf2Thr249) to activate its E3 ubiquitin ligase activity. Although we have clarified the importance of Erk5 in embryonic mesenchymal stem cells (MSCs) on skeletogenesis, its role in adult bone marrow (BM)-MSCs on bone homeostasis remains unknown. Leptin receptor-positive (LepR+) BM-MSCs represent a major source of bone in adult bone marrow and are critical regulators of postnatal bone homeostasis. Here, we identified Erk5 in BM-MSCs as an important regulator of bone homeostasis in adulthood. Bone marrow tissue was progressively osteosclerotic in mice lacking Erk5 in LepR+ BM-MSCs with age, accompanied by increased bone formation and normal bone resorption in vivo. Erk5 deficiency increased the osteogenic differentiation of BM-MSCs along with a higher expression of Runx2 and Osterix, essential transcription factors for osteogenic differentiation, without affecting their stemness in vitro. Erk5 deficiency decreased Smurf2Thr249 phosphorylation and subsequently increased Smad1/5/8-dependent signaling in BM-MSCs. The genetic introduction of the Smurf2T249E mutant (a phosphomimetic mutant) suppressed the osteosclerotic phenotype in Erk5-deficient mice. These findings suggest that the Erk5-Smurf2Thr249 axis in BM-MSCs plays a critical role in the maintenance of proper bone homeostasis by preventing excessive osteogenesis in adult bone marrow.


Subject(s)
Mesenchymal Stem Cells , Osteogenesis , Animals , Bone Marrow Cells/metabolism , Cell Differentiation/physiology , Homeostasis , Mesenchymal Stem Cells/metabolism , Mice , Mitogen-Activated Protein Kinase 7/genetics , Mitogen-Activated Protein Kinase 7/metabolism , Osteogenesis/genetics
15.
Commun Biol ; 5(1): 22, 2022 01 11.
Article in English | MEDLINE | ID: mdl-35017630

ABSTRACT

Glioma stem cells (GSCs) contribute to the pathogenesis of glioblastoma, the most malignant form of glioma. The implication and underlying mechanisms of SMAD specific E3 ubiquitin protein ligase 2 (SMURF2) on the GSC phenotypes remain unknown. We previously demonstrated that SMURF2 phosphorylation at Thr249 (SMURF2Thr249) activates its E3 ubiquitin ligase activity. Here, we demonstrate that SMURF2Thr249 phosphorylation plays an essential role in maintaining GSC stemness and tumorigenicity. SMURF2 silencing augmented the self-renewal potential and tumorigenicity of patient-derived GSCs. The SMURF2Thr249 phosphorylation level was low in human glioblastoma pathology specimens. Introduction of the SMURF2T249A mutant resulted in increased stemness and tumorigenicity of GSCs, recapitulating the SMURF2 silencing. Moreover, the inactivation of SMURF2Thr249 phosphorylation increases TGF-ß receptor (TGFBR) protein stability. Indeed, TGFBR1 knockdown markedly counteracted the GSC phenotypes by SMURF2T249A mutant. These findings highlight the importance of SMURF2Thr249 phosphorylation in maintaining GSC phenotypes, thereby demonstrating a potential target for GSC-directed therapy.


Subject(s)
Glioblastoma , Receptors, Transforming Growth Factor beta/genetics , Ubiquitin-Protein Ligases/genetics , Animals , Carcinogenesis/genetics , Carcinogenesis/pathology , Female , Glioblastoma/genetics , Glioblastoma/pathology , HEK293 Cells , Humans , Mice , Mice, Nude , Mutation/genetics , Phosphorylation/genetics
16.
Behav Brain Res ; 418: 113676, 2022 02 10.
Article in English | MEDLINE | ID: mdl-34801580

ABSTRACT

Resolvin E1 (RvE1) is an anti-inflammatory lipid mediator derived from eicosapentaenoic acid. We previously demonstrated that intracerebroventricular (i.c.v.) and intra-medial prefrontal cortex (mPFC) infusions of RvE1 produce antidepressant-like effects in a lipopolysaccharide-induced depression mouse model. To further confirm the antidepressant-like effect of RvE1, the present study examined whether RvE1 ameliorated depression-like behavior induced by repeated injections of prednisolone (PSL), a synthetic glucocorticoid, in male ICR mice. We first ascertained whether repeated subcutaneous treatment with PSL (50 mg/kg, once a day) affected locomotor activity and anxiety-like behavior in the open field test (OFT; after a 5-day PSL treatment) and induced depression-like behavior in the tail suspension test (TST; after a 6-day PSL treatment) and forced swim test (FST; after a 7-day PSL treatment). Repeated PSL injections significantly increased immobility in the FST, which was not ameliorated by acute desipramine treatment (30 mg/kg, i.p.), but not in the TST, without affecting locomotor activity and anxiety-like behavior in the OFT. Subsequently, we investigated the therapeutic effects of i.c.v. (1 ng) and intra-mPFC (50 pg/side) infusions of RvE1 in the repeated PSL-induced depression mouse model using the OFT and FST after 5- and 6-day PSL treatments, respectively. The repeated PSL-induced increase in immobility in the FST was significantly attenuated by both i.c.v. and intra-mPFC infusions of RvE1 without affecting the locomotor activity and anxiety-like behavior. In addition, a single i.c.v. infusion of RvE1 immediately before the first or fourth injection of PSL also attenuated PSL-induced depression-like behavior in the FST, suggesting the preventive effect of RvE1. These results indicate that RvE1 produces antidepressant-like effects in a mouse model of repeated PSL-induced depression.


Subject(s)
Antidepressive Agents/pharmacology , Depression/chemically induced , Dose-Response Relationship, Drug , Eicosapentaenoic Acid/analogs & derivatives , Locomotion/drug effects , Prednisolone/pharmacology , Animals , Disease Models, Animal , Eicosapentaenoic Acid/pharmacology , Hindlimb Suspension , Lipopolysaccharides/pharmacology , Male , Mice , Mice, Inbred ICR , Prefrontal Cortex/drug effects , Swimming
17.
J Pharmacol Sci ; 147(1): 33-39, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34294370

ABSTRACT

In contrast with the delayed onset of therapeutic responses and relatively low efficacy of currently available monoamine-based antidepressants, a single subanesthetic dose of ketamine, an N-methyl-D-aspartate receptor antagonist, produces rapid and sustained antidepressant actions even in patients with treatment-resistant depression. However, since the clinical use of ketamine as an antidepressant is limited owing to its adverse effects, such as psychotomimetic/dissociative effects and abuse potential, there is an unmet need for novel rapid-acting antidepressants with fewer side effects. Preclinical studies have revealed that the antidepressant actions of ketamine are mediated via the release of brain-derived neurotrophic factor and vascular endothelial growth factor, with the subsequent activation of mechanistic target of rapamycin complex 1 (mTORC1) in the medial prefrontal cortex. Recently, we demonstrated that resolvins (RvD1, RvD2, RvE1, RvE2 and RvE3), endogenous lipid mediators generated from n-3 polyunsaturated fatty acids (docosahexaenoic and eicosapentaenoic acids), exert antidepressant effects in a rodent model of depression, and that the antidepressant effects of RvD1, RvD2, and RvE1 necessitate mTORC1 activation. In this review, we first provide an overview of the mechanisms underlying the antidepressant effects of ketamine and other rapid-acting agents. We then discuss the possibility of using resolvins as novel therapeutic candidates for depression.


Subject(s)
Antidepressive Agents , Depressive Disorder, Major/drug therapy , Docosahexaenoic Acids/pharmacology , Docosahexaenoic Acids/therapeutic use , Eicosapentaenoic Acid/analogs & derivatives , Eicosapentaenoic Acid/pharmacology , Animals , Disease Models, Animal , Eicosapentaenoic Acid/therapeutic use , Mechanistic Target of Rapamycin Complex 1/metabolism , Mice , Prefrontal Cortex/metabolism
18.
J Pharmacol Sci ; 147(1): 58-61, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34294373

ABSTRACT

Nicotine administration enhances object recognition memory. However, target brain regions and cellular mechanisms underlying the nicotine effects remain unclear. In mice, the novel object recognition test revealed that systemic nicotine administration before training enhanced object recognition memory. Moreover, this effect was inhibited by infusion of retigabine, a selective voltage-dependent potassium 7 (Kv7) channel opener, into the medial prefrontal cortex (mPFC) before nicotine administration. Additionally, infusion of XE-991, a selective Kv7 channel blocker, into the mPFC before training enhanced object recognition memory. Therefore, Kv7 channels in the mPFC may be at least partly involved in nicotine-induced enhancement of object recognition memory.


Subject(s)
Memory/drug effects , Nicotine/pharmacology , Potassium Channels, Voltage-Gated/metabolism , Prefrontal Cortex/metabolism , Recognition, Psychology/drug effects , Animals , Anthracenes/pharmacology , Carbamates/pharmacology , Male , Mice, Inbred C57BL , Phenylenediamines/pharmacology , Potassium Channels, Voltage-Gated/physiology , Stimulation, Chemical
19.
Biol Pharm Bull ; 44(7): 1007-1013, 2021.
Article in English | MEDLINE | ID: mdl-34193682

ABSTRACT

Nicotine has been known to enhance recognition memory in various species. However, the brain region where nicotine acts and exerts its effect remains unclear. Since the medial prefrontal cortex (mPFC) is associated with memory, we examined the role of the mPFC in nicotine-induced enhancement of recognition memory using the novel object recognition test in male C57BL/6J mice. Systemic nicotine administration 10 min before training session significantly enhanced object recognition memory in test session that was performed 24 h after the training. Intra-mPFC infusion of mecamylamine, a non-selective nicotinic acetylcholine receptor (nAChR) antagonist, 5 min before nicotine administration blocked the effect of nicotine. Additionally, intra-mPFC infusion of dihydro-ß-erythroidine, a selective α4ß2 nAChR antagonist, or methyllycaconitine, a selective α7 nAChR antagonist, significantly suppressed the nicotine-induced object recognition memory enhancement. Finally, intra-mPFC infusion of nicotine 1 min before the training session augmented object recognition memory in a dose-dependent manner. These findings suggest that mPFC α4ß2 and α7 nAChRs mediate the nicotine-induced object recognition memory enhancement.


Subject(s)
Nicotine/pharmacology , Nicotinic Agonists/pharmacology , Prefrontal Cortex/drug effects , Receptors, Nicotinic/physiology , Recognition, Psychology/drug effects , alpha7 Nicotinic Acetylcholine Receptor/physiology , Aconitine/analogs & derivatives , Aconitine/pharmacology , Animals , Dihydro-beta-Erythroidine/pharmacology , Male , Mecamylamine/pharmacology , Mice, Inbred C57BL , Nicotinic Antagonists/pharmacology , Prefrontal Cortex/physiology , alpha7 Nicotinic Acetylcholine Receptor/antagonists & inhibitors
20.
Biol Pharm Bull ; 44(5): 724-731, 2021.
Article in English | MEDLINE | ID: mdl-33952828

ABSTRACT

Nicotine enhances attention, working memory and recognition. One of the brain regions associated with these effects of nicotine is the medial prefrontal cortex (mPFC). However, cellular mechanisms that induce the enhancing effects of nicotine remain unclear. To address this issue, we performed whole-cell patch-clamp recordings from mPFC layer 5 pyramidal neurons in slices of C57BL/6J mice. Shortly (approx. 2 min) after bath application of nicotine, the number of action potentials, which were elicited by depolarizing current injection, was increased, and this increase persisted for over 5 min. The effect of nicotine was blocked by the α4ß2 nicotinic acetylcholine receptor (nAChR) antagonist dihydro-ß-erythroidine, α7 nAChR antagonist methyllycaconitine, or intracellular perfusion with the Ca2+ chelator 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid (BAPTA). Additionally, the voltage-dependent potassium 7 (Kv7) channel blocker, 10,10-bis(4-pyridinylmethyl)-9(10H)-anthracenone dihydrochloride (XE-991), as well as nicotine, shortened the spike threshold latency and increased the spike numbers. By contrast, the Kv7 channel opener, retigabine reduced the number of firings, and the addition of nicotine did not increase the spike numbers. These results indicate that nicotine induces long-lasting enhancement of firing activity in mPFC layer 5 pyramidal neurons, which is mediated by the stimulation of the α4ß2 and α7 nAChRs and subsequent increase in intracellular Ca2+ levels followed by the suppression of the Kv7 channels. The novel effect of nicotine might underlie the nicotine-induced enhancement of attention, working memory and recognition.


Subject(s)
Action Potentials/drug effects , Nicotine/pharmacology , Potassium Channels, Voltage-Gated/antagonists & inhibitors , Prefrontal Cortex/drug effects , Pyramidal Cells/drug effects , Animals , Anthracenes/pharmacology , Cells, Cultured , Female , Male , Mice , Nicotinic Antagonists/pharmacology , Patch-Clamp Techniques , Potassium Channels, Voltage-Gated/metabolism , Prefrontal Cortex/cytology , Prefrontal Cortex/metabolism , Primary Cell Culture , Pyramidal Cells/metabolism , Receptors, Nicotinic/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...