Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Biosci Bioeng ; 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38991881

ABSTRACT

Bacteria produce polycationic homopoly(amino acid)s, which are characterized by isopeptide backbones. We previously demonstrated that two representative bacterial polycationic isopeptides, ε-poly-l-α-lysine consisting of 25-35 l-α-lysine residues (ε-PαL25-35) and ε-poly-l-ß-lysine consisting of l-ß-lysine residues (ε-PßL4-13), were internalized into mammalian cells by both energy-independent direct penetration and energy-dependent endocytosis/macropinocytosis, and then diffused throughout the cytosol. In this study, we investigated the cell-penetrating activity of an ε-PαL short-chain derivative consisting of 5-14 l-α-lysine residues (ε-PαL5-14) to gain insight into the relationship between the isopeptide-chain length and the manner of cellular internalization. We prepared a conjugate of ε-PαL5-14 and a fluorescent dye (FAM) by click chemistry, and incubated the resulting polymer, ε-PαL5-14-FAM, with HeLa cells. Unlike ε-PαL25-35-FAM, ε-PαL5-14-FAM was internalized into cells only by energy-dependent endocytosis/macropinocytosis. Furthermore, a high concentration (>50 µM) was required for the internalization events. ε-PαL5-14 has a chain length almost equal to that of the membrane permeable ε-PßL4-13, which can enter cells at low concentrations. Considering that the basicity of the ß-amino group is higher than that of α-amino acid at physiological pH, ε-PßL is expected to have a greater cell-penetrating capacity than ε-PαL, provided their isopeptide-chain lengths are similar, suggesting that a more extended chain derivative of ε-PßL would be more advantageous for cellular internalization of cargo proteins than ε-PαL25-35.

2.
Commun Biol ; 5(1): 1132, 2022 10 26.
Article in English | MEDLINE | ID: mdl-36289442

ABSTRACT

Bacteria produce polycationic homopoly(amino acid)s, which are characterized by isopeptide backbones. Although the biological significance of polycationic homopoly(amino acid)s remains unclear, increasing attention has recently been focused on their potential use to achieve cellular internalization. Here, for the first time, we provide direct evidence that two representative bacterial polycationic isopeptides, ε-poly-L-α-lysine (ε-PαL) and ε-oligo-L-ß-lysine (ε-OßL), were internalized into mammalian cells by direct cell-membrane penetration and then diffused throughout the cytosol. In this study, we used clickable ε-PαL and ε-OßL derivatives carrying a C-terminal azide group, which were enzymatically produced and then conjugated with a fluorescent dye to analyze subcellular localization. Interestingly, fluorescent proteins conjugated with the clickable ε-PαL or ε-OßL were also internalized into cells and diffused throughout the cytosol. Notably, a Cre recombinase conjugate with ε-PαL entered cells and mediated the Cre/loxP recombination, and ε-PαL was found to deliver a full-length IgG antibody to the cytosol and nucleus.


Subject(s)
Amino Acids , Lysine , Animals , Amino Acids/metabolism , Lysine/metabolism , Fluorescent Dyes , Azides , Bacteria/metabolism , Immunoglobulin G , Mammals
3.
Sci Rep ; 5: 12947, 2015 Aug 11.
Article in English | MEDLINE | ID: mdl-26263392

ABSTRACT

Neoculin (NCL) is a heterodimeric protein isolated from the edible fruit of Curculigo latifolia. It exerts a taste-modifying activity by converting sourness to sweetness. We previously demonstrated that NCL changes its action on the human sweet receptor hT1R2-hT1R3 from antagonism to agonism as the pH changes from neutral to acidic values, and that the histidine residues of NCL molecule play critical roles in this pH-dependent functional change. Here, we comprehensively screened key amino acid residues of NCL using nuclear magnetic resonance (NMR) spectroscopy and alanine scanning mutagenesis. We found that the mutations of Arg48, Tyr65, Val72 and Phe94 of NCL basic subunit increased or decreased both the antagonist and agonist activities. The mutations had only a slight effect on the pH-dependent functional change. These residues should determine the affinity of NCL for the receptor regardless of pH. Their locations were separated from the histidine residues responsible for the pH-dependent functional change in the tertiary structure. From these results, we concluded that NCL interacts with hT1R2-hT1R3 through a pH-independent affinity interface including the four residues and a pH-dependent activation interface including the histidine residues. Thus, the receptor activation is induced by local structural changes in the pH-dependent interface.


Subject(s)
Plant Proteins/metabolism , Receptors, G-Protein-Coupled/metabolism , HEK293 Cells , Humans , Hydrogen-Ion Concentration , Models, Molecular , Mutagenesis , Nuclear Magnetic Resonance, Biomolecular , Plant Proteins/chemistry , Plant Proteins/genetics , Protein Binding
4.
Org Lett ; 6(13): 2213-5, 2004 Jun 24.
Article in English | MEDLINE | ID: mdl-15200323

ABSTRACT

[reaction: see text] N-Tosyl 3-substituted indoles were hydrogenated with high enantioselectivities (95-98% ee) by use of a trans-chelating chiral bisphosphine, (S,S)-(R,R)-PhTRAP ligand. The chiral catalyst, which was generated in situ from [Rh(nbd)(2)]SbF(6), PhTRAP, and Cs(2)CO(3), is useful for enantioselectively synthesizing a range of diverse optically active indolines possessing a chiral carbon at the 3-position.

SELECTION OF CITATIONS
SEARCH DETAIL
...