Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Magn Reson Imaging ; 49(4): 1157-1165, 2019 04.
Article in English | MEDLINE | ID: mdl-30552829

ABSTRACT

BACKGROUND: Contrast-enhanced magnetic resonance imaging (CE-MRI) of the breast is highly sensitive for breast cancer detection. Multichannel coils and 3T scanners can increase signal, spatial, and temporal resolution. In addition, the T1 -reduction effect of a gadolinium-based contrast agent (GBCA) is higher at 3T. Thus, it might be possible to reduce the dose of GBCA at 3T without losing diagnostic information. PURPOSE: To compare a three-quarter (0.075 mmol/kg) dose of the high-relaxivity GBCA gadobenate dimeglumine, with a 1.5-fold higher than on-label dose (0.15 mmol/kg) of gadoterate meglumine for breast lesion detection and characterization at 3T CE-MRI. STUDY TYPE: Prospective, randomized, intraindividual comparative study. POPULATION: Eligible were patients with imaging abnormalities (BI-RADS 0, 4, 5) on conventional imaging. Each patient underwent two examinations, 24-72 hours apart, one with 0.075 mmol/kg gadobenate and the other with 0.15 mmol/kg gadoterate administered in a randomized order. In all, 109 patients were prospectively recruited. FIELD STRENGTH/SEQUENCE: 3T MRI with a standard breast protocol (dynamic-CE, T2 w-TSE, STIR-T2 w, DWI). ASSESSMENT: Histopathology was the standard of reference. Three blinded, off-site breast radiologists evaluated the examinations using the BI-RADS lexicon. STATISTICAL TESTS: Lesion detection, sensitivity, specificity, and diagnostic accuracy were calculated per-lesion and per-region, and compared by univariate and multivariate analysis (Generalized Estimating Equations, GEE). RESULTS: Five patients were excluded, leaving 104 women with 142 histologically verified breast lesions (109 malignant, 33 benign) available for evaluation. Lesion detection with gadobenate (84.5-88.7%) was not inferior to gadoterate (84.5-90.8%) (P ≥ 0.165). At per-region analysis, gadobenate demonstrated higher specificity (96.4-98.7% vs. 92.6-97.3%, P ≤ 0.007) and accuracy (96.3-97.8% vs. 93.6-96.1%, P ≤ 0.001) compared with gadoterate. Multivariate analysis demonstrated superior, reader-independent diagnostic accuracy with gadobenate (odds ratio = 1.7, P < 0.001 using GEE). DATA CONCLUSION: A 0.075 mmol/kg dose of the high-relaxivity contrast agent gadobenate was not inferior to a 0.15 mmol/kg dose of gadoterate for breast lesion detection. Gadobenate allowed increased specificity and accuracy. LEVEL OF EVIDENCE: 1 Technical Efficacy: Stage 2 J. Magn. Reson. Imaging 2019;49:1157-1165.


Subject(s)
Breast Neoplasms/diagnostic imaging , Magnetic Resonance Imaging , Meglumine/analogs & derivatives , Organometallic Compounds/pharmacology , Adult , Aged , Aged, 80 and over , Contrast Media/pharmacology , Cross-Over Studies , Double-Blind Method , Female , Humans , Image Processing, Computer-Assisted , Meglumine/pharmacology , Middle Aged , Multivariate Analysis , Prospective Studies , Sensitivity and Specificity
2.
Radiology ; 241(2): 367-77, 2006 Nov.
Article in English | MEDLINE | ID: mdl-17057065

ABSTRACT

PURPOSE: To prospectively assess the accuracy of nonenhanced versus ultrasmall superparamagnetic iron oxide (USPIO)-enhanced magnetic resonance (MR) imaging for depiction of axillary lymph node metastases in patients with breast carcinoma, with histopathologic findings as reference standard. MATERIALS AND METHODS: The study was approved by the university ethics committee; written informed consent was obtained. Twenty-two women (mean age, 60 years; range, 40-79 years) with breast carcinomas underwent nonenhanced and USPIO-enhanced (2.6 mg of iron per kilogram of body weight intravenously administered) transverse T1-weighted and transverse and sagittal T2-weighted and T2*-weighted MR imaging in adducted and elevated arm positions. Two experienced radiologists, blinded to the histopathologic findings, analyzed images of axillary lymph nodes with regard to size, morphologic features, and USPIO uptake. A third independent radiologist served as a tiebreaker if consensus between two readers could not be reached. Visual and quantitative analyses of MR images were performed. Sensitivity, specificity, and accuracy values were calculated. To assess the effect of USPIO after administration, signal-to-noise ratio (SNR) changes were statistically analyzed with repeated-measurements analysis of variance (mixed model) for MR sequences. RESULTS: At nonenhanced MR imaging, of 133 lymph nodes, six were rated as true-positive, 99 as true-negative, 23 as false-positive, and five as false-negative. At USPIO-enhanced MR imaging, 11 lymph nodes were rated as true-positive, 120 as true-negative, two as false-positive, and none as false-negative. In two metastatic lymph nodes in two patients with more than one metastatic lymph node, a consensus was not reached. USPIO-enhanced MR imaging revealed a node-by-node sensitivity, specificity, and accuracy of 100%, 98%, and 98%, respectively. At USPIO-enhanced MR imaging, no metastatic lymph nodes were missed on a patient-by-patient basis. Significant interactions indicating differences in the decrease of SNR values for metastatic and nonmetastatic lymph nodes were found for all sequences (P < .001 to P = .022). CONCLUSION: USPIO-enhanced MR imaging appears valuable for assessment of axillary lymph node metastases in patients with breast carcinomas and is superior to nonenhanced MR imaging.


Subject(s)
Breast Neoplasms/pathology , Iron , Lymph Nodes/pathology , Magnetic Resonance Imaging/methods , Oxides , Adult , Aged , Axilla , Breast Neoplasms/surgery , Contrast Media , Dextrans , Female , Ferrosoferric Oxide , Humans , Lymph Nodes/surgery , Lymphatic Metastasis , Magnetite Nanoparticles , Middle Aged , Predictive Value of Tests , Prospective Studies , Sensitivity and Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...