Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Am J Case Rep ; 22: e933460, 2021 Nov 08.
Article in English | MEDLINE | ID: mdl-34744160

ABSTRACT

BACKGROUND When a woman becomes pregnant, the placenta produces human placental lactogen (hPL). The anti-insulin effect of hPL raises maternal blood glucose levels, allowing the fetus to use glucose as a nutrient. Because hPL is produced by the placenta until delivery, insulin requirements in patients with gestational diabetes mellitus (GDM) typically increase, but in some cases, they may decrease. We retrospectively examined data from women with GDM who received insulin and delivered at our hospital. CASE REPORT From April 2019 to March 2020, we targeted patients who were diagnosed with GDM, received insulin, and delivered at our hospital. GDM was diagnosed based on the guidelines from the Japanese Society of Obstetrics and Gynecology. The rate of change in insulin dosage was calculated as: (insulin dosage at delivery - insulin dosage 14 days before delivery) divided by 14. Two patients whose insulin dosage was significantly reduced developed a syndrome of hemolysis, elevated liver enzymes, and low platelet count or acute fatty liver of pregnancy and underwent emergency cesarean section. CONCLUSIONS The present case report suggests that a decrease in insulin requirement in pregnant patients with GDM can predict maternal abnormalities due to placental dysfunction.


Subject(s)
Diabetes, Gestational , Blood Glucose , Cesarean Section , Diabetes, Gestational/drug therapy , Female , Hemolysis , Humans , Insulin/therapeutic use , Liver , Placenta , Platelet Count , Pregnancy , Retrospective Studies
2.
Opt Lett ; 40(10): 2157-60, 2015 May 15.
Article in English | MEDLINE | ID: mdl-26393688

ABSTRACT

Using an ultrafast optical technique with enhanced frequency control, we image surface-acoustic whispering-gallery-like modes in a microscopic disk at various frequencies up to 1 gigahertz (GHz), allowing experimental determination of their dispersion. This is made possible by intensity-modulated optical pumping and probing with a periodic femtosecond light source. Spatiotemporal Fourier transforms of the two-dimensional acoustic fields measured to micron resolution allow us to isolate individual whispering-gallery modes of first and second radial order as well as their mode patterns and Q factors to unprecedented frequency resolution. We thereby demonstrate arbitrary-frequency ultrafast control and imaging of a micro-acoustic system with an optical time-resolved technique. Applications include quality control of surface acoustic wave filters in telecommunications.

3.
Article in English | MEDLINE | ID: mdl-25768824

ABSTRACT

We describe a way to generate and detect arbitrary frequency components in time-resolved surface acoustic wave imaging based on optical pumping and probing with a periodic light source. The detailed theory of the technique, based on beam modulation and Fourier analysis, for a variety of possible experimental configurations is presented, followed by experimental data for a glass substrate covered with a thin gold film. We show how the acoustic dispersion relation can be obtained to arbitrary frequency resolution, not limited by the laser pulse repetition rate.

SELECTION OF CITATIONS
SEARCH DETAIL
...