Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 47
Filter
Add more filters










Publication year range
1.
J Exp Bot ; 75(11): 3431-3451, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38520311

ABSTRACT

Labdane-related diterpenoids (LRDs), a subgroup of terpenoids, exhibit structural diversity and significant commercial and pharmacological potential. LRDs share the characteristic decalin-labdanic core structure that derives from the cycloisomerization of geranylgeranyl diphosphate (GGPP). Labdanes derive their name from the oleoresin known as 'Labdanum', 'Ladano', or 'Aladano', used since ancient Greek times. Acetylated labdanes, rarely identified in plants, are associated with enhanced biological activities. Chemical analysis of Cistus creticus subsp. creticus revealed labda-7,13(E)-dien-15-yl acetate and labda-7,13(E)-dien-15-ol as major constituents. In addition, novel labdanes such as cis-abienol, neoabienol, ent-copalol, and one as yet unidentified labdane-type diterpenoid were detected for the first time. These compounds exhibit developmental regulation, with higher accumulation observed in young leaves. Using RNA-sequencing (RNA-seq) analysis of young leaf trichomes, it was possible to identify, clone, and eventually functionally characterize labdane-type diterpenoid synthase (diTPS) genes, encoding proteins responsible for the production of labda-7,13(E)-dien-15-yl diphosphate (endo-7,13-CPP), labda-7,13(E)-dien-15-yl acetate, and labda-13(E)-ene-8α-ol-15-yl acetate. Moreover, the reconstitution of labda-7,13(E)-dien-15-yl acetate and labda-13(E)-ene-8α-ol-15-yl acetate production in yeast is presented. Finally, the accumulation of LRDs in different plant tissues showed a correlation with the expression profiles of the corresponding genes.


Subject(s)
Biosynthetic Pathways , Cistus , Diterpenes , Plant Leaves , Trichomes , Diterpenes/metabolism , Trichomes/metabolism , Trichomes/genetics , Plant Leaves/metabolism , Plant Leaves/genetics , Cistus/genetics , Cistus/metabolism , Transcriptome , Acetylation , Gene Expression Profiling
2.
J Exp Bot ; 75(9): 2740-2753, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38366668

ABSTRACT

Ascorbic acid (AsA) plays an indispensable role in plants, serving as both an antioxidant and a master regulator of the cellular redox balance. Ascorbate oxidase (AO) is a blue copper oxidase that is responsible for the oxidation of AsA with the concomitant production of water. For many decades, AO was erroneously postulated as an enzyme without any obvious advantage, as it decreases the AsA pool size and thus is expected to weaken plant stress resistance. It was only a decade ago that this perspective shifted towards the fundamental role of AO in orchestrating both AsA and oxygen levels by influencing the overall redox balance in the extracellular matrix. Consistent with its localization in the apoplast, AO is involved in cell expansion, division, resource allocation, and overall plant yield. An increasing number of transgenic studies has demonstrated that AO can also facilitate communication between the surrounding environment and the cell, as its gene expression is highly responsive to factors such as hormonal signaling, oxidative stress, and mechanical injury. This review aims to describe the multiple functions of AO in plant growth, development, and stress resilience, and explore any additional roles the enzyme might have in fruits during the course of ripening.


Subject(s)
Ascorbate Oxidase , Ascorbate Oxidase/metabolism , Ascorbate Oxidase/genetics , Plants/enzymology , Plants/metabolism , Plants/genetics , Plant Proteins/metabolism , Plant Proteins/genetics , Ascorbic Acid/metabolism , Plant Development
3.
Front Plant Sci ; 14: 1267340, 2023.
Article in English | MEDLINE | ID: mdl-37818313

ABSTRACT

Introduction: Tomato is a high economic value crop worldwide with recognized nutritional properties and diverse postharvest potential. Nowadays, there is an emerging awareness about the exploitation and utilization of underutilized traditional germplasm in modern breeding programs. In this context, the existing diversity among Greek accessions in terms of their postharvest life and nutritional value remains largely unexplored. Methods: Herein, a detailed evaluation of 130 tomato Greek accessions for postharvest and nutritional characteristics was performed, using metabolomics and transcriptomics, leading to the selection of accessions with these interesting traits. Results: The results showed remarkable differences among tomato Greek accessions for overall ripening parameters (color, firmness) and weight loss. On the basis of their postharvest performance, a balance between short shelf life (SSL) and long shelf life (LSL) accessions was revealed. Metabolome analysis performed on 14 selected accessions with contrasting shelf-life potential identified a total of 206 phytonutrients and volatile compounds. In turn, transcriptome analysis in fruits from the best SSL and the best LSL accessions revealed remarkable differences in the expression profiles of transcripts involved in key metabolic pathways related to fruit quality and postharvest potential. Discussion: The pathways towards cell wall synthesis, polyamine synthesis, ABA catabolism, and steroidal alkaloids synthesis were mostly induced in the LSL accession, whereas those related to ethylene biosynthesis, cell wall degradation, isoprenoids, phenylpropanoids, ascorbic acid and aroma (TomloxC) were stimulated in the SSL accession. Overall, these data would provide valuable insights into the molecular mechanism towards enhancing shelf-life and improving flavor and aroma of modern tomato cultivars.

4.
Mol Plant ; 16(3): 549-570, 2023 03 06.
Article in English | MEDLINE | ID: mdl-36639870

ABSTRACT

The presence of anticancer clerodane diterpenoids is a chemotaxonomic marker for the traditional Chinese medicinal plant Scutellaria barbata, although the molecular mechanisms behind clerodane biosynthesis are unknown. Here, we report a high-quality assembly of the 414.98 Mb genome of S. barbata into 13 pseudochromosomes. Using phylogenomic and biochemical data, we mapped the plastidial metabolism of kaurene (gibberellins), abietane, and clerodane diterpenes in three species of the family Lamiaceae (Scutellaria barbata, Scutellaria baicalensis, and Salvia splendens), facilitating the identification of genes involved in the biosynthesis of the clerodanes, kolavenol, and isokolavenol. We show that clerodane biosynthesis evolved through recruitment and neofunctionalization of genes from gibberellin and abietane metabolism. Despite the assumed monophyletic origin of clerodane biosynthesis, which is widespread in species of the Lamiaceae, our data show distinct evolutionary lineages and suggest polyphyletic origins of clerodane biosynthesis in the family Lamiaceae. Our study not only provides significant insights into the evolution of clerodane biosynthetic pathways in the mint family, Lamiaceae, but also will facilitate the production of anticancer clerodanes through future metabolic engineering efforts.


Subject(s)
Diterpenes, Clerodane , Diterpenes , Plants, Medicinal , Scutellaria , Diterpenes, Clerodane/chemistry , Diterpenes, Clerodane/metabolism , Scutellaria/genetics , Scutellaria/chemistry , Scutellaria/metabolism , Abietanes/metabolism , Diterpenes/chemistry , Diterpenes/metabolism , Plants, Medicinal/genetics , Plants, Medicinal/metabolism
5.
Plant Physiol Biochem ; 193: 124-138, 2022 Dec 15.
Article in English | MEDLINE | ID: mdl-36356544

ABSTRACT

L-Ascorbic acid (AsA), a strong antioxidant, serves as an enzyme cofactor and redox status marker, modulating a plethora of biological processes. As tomato commercial varieties and hybrids possess relatively low amounts of AsA, the improvement of fruit AsA represents a strategic goal for enhanced human health. Previously, we have suggested that GDP-L-Galactose phosphorylase (GGP) and L-galactose-1-phosphate phosphatase (GPP) can serve as possible targets for AsA manipulation in tomato (Solanum lycopersicon L.) fruit. To this end, we produced and evaluated T3 transgenic tomato plants carrying these two genes under the control of CaMV-35S and two fruit specific promoters, PPC2 and PG-GGPI. The transgenic lines had elevated levels of AsA, with the PG-GGP1 line containing 3-fold more AsA than WT, without affecting fruit characteristics. Following RNA-Seq analysis, 164 and 13 DEGs were up- or down-regulated, respectively, between PG-GGP1 and WT pink fruits. PG-GGP1 fruit had a distinct number of up-regulated transcripts associated with cell wall modification, ethylene biosynthesis and signaling, pollen fertility and carotenoid metabolism. The elevated AsA accumulation resulted in the up regulation of AsA associated transcripts and alternative biosynthetic pathways suggesting that the entire metabolic pathway was influenced, probably via master regulation. We show here that AsA-fortification of tomato ripe fruit via GGP1 overexpression under the action of a fruit specific promoter PG affects fruit development and ripening, reduces ethylene production, and increased the levels of sugars, and carotenoids, supporting a robust database to further explore the role of AsA induced genes for agronomically important traits, breeding programs and precision gene editing approaches.


Subject(s)
Nutritive Value , Solanum lycopersicum , Ascorbic Acid/chemistry , Ethylenes/chemistry , Fruit/chemistry , Gene Expression Regulation, Plant , Solanum lycopersicum/chemistry , Solanum lycopersicum/genetics , Phosphates/chemistry , Phosphoric Monoester Hydrolases/genetics , Plant Breeding , Plants, Genetically Modified/chemistry
6.
Hortic Res ; 9: uhac112, 2022.
Article in English | MEDLINE | ID: mdl-35795386

ABSTRACT

The Mediterranean basin countries are considered secondary centres of tomato diversification. However, information on phenotypic and allelic variation of local tomato materials is still limited. Here we report on the evaluation of the largest traditional tomato collection, which includes 1499 accessions from Southern Europe. Analyses of 70 traits revealed a broad range of phenotypic variability with different distributions among countries, with the culinary end use within each country being the main driver of tomato diversification. Furthermore, eight main tomato types (phenoclusters) were defined by integrating phenotypic data, country of origin, and end use. Genome-wide association study (GWAS) meta-analyses identified associations in 211 loci, 159 of which were novel. The multidimensional integration of phenoclusters and the GWAS meta-analysis identified the molecular signatures for each traditional tomato type and indicated that signatures originated from differential combinations of loci, which in some cases converged in the same tomato phenotype. Our results provide a roadmap for studying and exploiting this untapped tomato diversity.

7.
J Exp Bot ; 73(11): 3431-3445, 2022 06 02.
Article in English | MEDLINE | ID: mdl-35358313

ABSTRACT

A comprehensive collection of 1254 tomato accessions, corresponding to European traditional and modern varieties, early domesticated varieties, and wild relatives, was analyzed by genotyping by sequencing. A continuous genetic gradient between the traditional and modern varieties was observed. European traditional tomatoes displayed very low genetic diversity, with only 298 polymorphic loci (95% threshold) out of 64 943 total variants. European traditional tomatoes could be classified into several genetic groups. Two main clusters consisting of Spanish and Italian accessions showed higher genetic diversity than the remaining varieties, suggesting that these regions might be independent secondary centers of diversity with a different history. Other varieties seem to be the result of a more recent complex pattern of migrations and hybridizations among the European regions. Several polymorphic loci were associated in a genome-wide association study with fruit morphological traits in the European traditional collection. The corresponding alleles were found to contribute to the distinctive phenotypic characteristic of the genetic varietal groups. The few highly polymorphic loci associated with morphological traits in an otherwise a low-diversity population suggests a history of balancing selection, in which tomato farmers likely maintained the morphological variation by inadvertently applying a high selective pressure within different varietal types.


Subject(s)
Solanum lycopersicum , Alleles , Farmers , Genetic Variation , Genome-Wide Association Study , Humans , Solanum lycopersicum/genetics , Phenotype , Polymorphism, Single Nucleotide
8.
Plants (Basel) ; 10(9)2021 Sep 18.
Article in English | MEDLINE | ID: mdl-34579479

ABSTRACT

Plants are exposed to numerous abiotic stresses. Drought is probably the most important of them and determines crop distribution around the world. Grapevine is considered to be a drought-resilient species, traditionally covering semiarid areas. Moreover, in the case of grapevine, moderate water deficit is known to improve the quality traits of grape berries and subsequently wine composition. However, against the backdrop of climate change, vines are expected to experience sustained water deficits which could be detrimental to both grape quality and yield. The influence of water deficit on two Greek Vitis vinifera L. cultivars, 'Agiorgitiko' and 'Assyrtiko', was investigated during the 2019 and 2020 vintages. Vine physiology measurements in irrigated and non-irrigated plants were performed at three time-points throughout berry development (green berry, veraison and harvest). Berry growth and composition were examined during ripening. According to the results, water deficit resulted in reduced berry size and increased levels of soluble sugars, total phenols and anthocyanins. The expression profile of specific genes, known to control grape color, aroma and flavor was altered by water availability during maturation in a cultivar-specific manner. In agreement with the increased concentration of phenolic compounds due to water deficit, genes of the phenylpropanoid pathway in the red-skinned Agiorgitiko exhibited higher expression levels and earlier up-regulation than in the white Assyrtiko. The expression profile of the other genes during maturation or in response to water deficit was depended on the vintage.

9.
Plants (Basel) ; 10(8)2021 Aug 06.
Article in English | MEDLINE | ID: mdl-34451664

ABSTRACT

Cistus (Cistaceae) comprises a number of white- and purple-flowering shrub species widely distributed in the Mediterranean basin. Within genus Cistus, many taxa are subject to various taxonomic uncertainties. Cistus creticus, a prominent member of the purple-flowered clade, is a prime case of the current taxonomic troubles. Floras and databases approve different species names and utilise different or additional/fewer synonyms. Various intraspecific classification systems based on subspecies or varieties are in use. The inconsistent determination of plant material makes it difficult to compare literature regarding the phytochemical diversity and biological activities of plant material and impedes a systematic utilization of the manifold medicinal properties of C. creticus. In the present investigation, we used DNA sequence data from one nuclear region (ITS) and two chloroplast regions (trnL-trnF, rpl32-trnL) to test the intraspecific genetic diversity of C. creticus and its evolutionary relationships to the closely related C. albidus. The combined DNA data confirmed C. creticus as a rather heterogeneous species that integrates two major evolutionary lineages with clearly different genetic characteristics. The 'Eastern Mediterranean clade' seems to represent old and ancestral characteristics. This lineage exhibits a close relationship to the geographically distant C. albidus, expressed by very closely related ribotypes and an interspecifically shared chlorotype. The 'Western Mediterranean clade' is characterized by a distinctive ITS polymorphism (co-occurring paralogous ribotypes) and more distantly related chlorotypes. The formation of the genetically complex 'Western Mediterranean clade' seems to have involved hybridization and recurrent formation or migration movements.

10.
Genes (Basel) ; 12(5)2021 05 06.
Article in English | MEDLINE | ID: mdl-34066421

ABSTRACT

Ascorbic acid (AsA) is an essential multifaceted phytonutrient for both the human diet and plant growth. Optimum levels of AsA accumulation combined with balanced redox homeostasis are required for normal plant development and defense response to adverse environmental stimuli. Notwithstanding its moderate AsA levels, tomatoes constitute a good source of vitamin C in the human diet. Therefore, the enhancement of AsA levels in tomato fruit attracts considerable attention, not only to improve its nutritional value but also to stimulate stress tolerance. Genetic regulation of AsA concentrations in plants can be achieved through the fine-tuning of biosynthetic, recycling, and transport mechanisms; it is also linked to changes in the whole fruit metabolism. Emerging evidence suggests that tomato synthesizes AsA mainly through the l-galactose pathway, but alternative pathways through d-galacturonate or myo-inositol, or seemingly unrelated transcription and regulatory factors, can be also relevant in certain developmental stages or in response to abiotic factors. Considering the recent advances in our understanding of AsA regulation in model and other non-model species, this review attempts to link the current consensus with novel technologies to provide a comprehensive strategy for AsA enhancement in tomatoes, without any detrimental effect on plant growth or fruit development.


Subject(s)
Ascorbic Acid/metabolism , Solanum lycopersicum/metabolism , Stress, Physiological , Ascorbic Acid/genetics , Biofortification/methods , Solanum lycopersicum/genetics , Solanum lycopersicum/standards , Plant Breeding/methods
11.
Front Plant Sci ; 12: 619634, 2021.
Article in English | MEDLINE | ID: mdl-33841455

ABSTRACT

Cistus creticus L. subsp. creticus (rockrose) is a shrub widespread in Greece and the Mediterranean basin and has been used in traditional medicine as herb tea for colds, for healing and digestive hitches, for the treatment of maladies, as perfumes, and for other purposes. Compounds from its flavonoid fraction have recently drawn attention due to antiviral action against influenza virus and HIV. Although several bioactive metabolites belonging to this group have been chemically characterized in the leaves, the genes involved in their biosynthesis in Cistus remain largely unknown. Flavonoid metabolism during C. creticus fruit development was studied by adopting comparative metabolomic and transcriptomic approaches. The present study highlights the fruit of C. creticus subsp. creticus as a rich source of flavonols, flavan-3-ols, and proanthocyanidins, all of which displayed a decreasing trend during fruit development. The majority of proanthocyanidins recorded in Cistus fruit are B-type procyanidins and prodelphinidins, while gallocatechin and catechin are the dominant flavan-3-ols. The expression patterns of biosynthetic genes and transcription factors were analyzed in flowers and throughout three fruit development stages. Flavonoid biosynthetic genes were developmentally regulated, showing a decrease in transcript levels during fruit maturation. A high degree of positive correlations between the content of targeted metabolites and the expression of biosynthetic genes indicated the transcriptional regulation of flavonoid biosynthesis during C. creticus fruit development. This is further supported by the high degree of significant positive correlations between the expression of biosynthetic genes and transcription factors. The results suggest that leucoanthocyanidin reductase predominates the biosynthetic pathway in the control of flavan-3-ol formation, which results in catechin and gallocatechin as two of the major building blocks for Cistus proanthocyanidins. Additionally, there is a decline in ethylene production rates during non-climacteric Cistus fruit maturation, which coincides with the downregulation of the majority of flavonoid- and ethylene-related biosynthetic genes and corresponding transcription factors as well as with the decline in flavonoid content. Finally, functional characterization of a Cistus flavonoid hydroxylase (F3'5'H) was performed for the first time.

12.
Plant Physiol Biochem ; 156: 291-303, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32987259

ABSTRACT

Ascorbate oxidase (AO, EC 1.10.3.3) is a copper-containing enzyme localized at the apoplast, where it catalyzes the oxidation of ascorbic acid (AA) to dehydroascorbic acid (DHA) via monodehydroascorbic acid (MDHA) intermediate. Despite it has been extensively studied, no biological roles have been definitively ascribed. To understand the role of AO in plant metabolism, fruit growth and physiology, we suppressed AO expression in melon (Cucumis melo L.) fruit. Reduction of AO activity increased AA content in melon fruit, which is the result of repression of AA oxidation and simultaneous induction of certain biosynthetic and recycling genes. As a consequence, ascorbate redox state was altered in the apoplast. Interestingly, transgenic melon fruit displayed increased ethylene production rate coincided with elevated levels of 1-aminocyclopropane-1-carboxylic acid (ACC) oxidase (ACO, EC 1.14.17.4) activity and gene expression, which might contribute to earlier ripening. Moreover, AO suppressed transgenic melon fruit exhibited a dramatic arrest in fruit growth, due to a simultaneous decrease in fruit cell size and in plasmalemma (PM) ATPase activity. All the above, support for the first time, the in vivo AO participation in the rapid fruit growth of Cucurbitaceae and further suggest an alternative route for AA increase in ripening fruit.


Subject(s)
Ascorbate Oxidase/genetics , Ascorbic Acid/analysis , Cucurbitaceae/genetics , Gene Silencing , Cucurbitaceae/growth & development , Fruit/enzymology , Fruit/physiology , Gene Expression Regulation, Plant , Plants, Genetically Modified/growth & development
14.
Phytochemistry ; 167: 112082, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31421542

ABSTRACT

Labdane diterpenes (LDs), and especially sclareol, are important feedstocks for the pharmaceutical and cosmetic industries, and therefore several lines of research have led to their heterologous production in non-photosynthetic microbes and higher plants. The potential of microalgae as bioreactors of natural products has been established for a variety of bioactive metabolites, including terpenes. In this work, a codon optimized sequence encoding a key plant labdane-type diterpene (LD) cyclase, copal-8-ol diphosphate synthase from Cistus creticus (CcCLS), was introduced into the chloroplast genome of Chlamydomonas reinhardtii. Of 49 transplastomic algal lines, 12 produced variable amounts of four LD compounds, namely ent-manoyl oxide, sclareol, labda-13-ene-8α,15-diol and ent-13-epi-manoyl oxide. The total LD concentrations measured in the transplastomic lines reached 1.172 ±â€¯0.05 µg/mg cell DW for the highest overall producer, while the highest yield for sclareol was 0.038 ±â€¯0.001 µg/mg cell DW. Thus, transplastomic expression of a key plant labdane diterpene cyclase in the C. reinhardtii chloroplast genome enabled the production of important plant-specific LD compounds.


Subject(s)
Chlamydomonas reinhardtii/genetics , Chlamydomonas reinhardtii/metabolism , Diterpenes/metabolism , Genetic Engineering , Alkyl and Aryl Transferases/genetics , Chloroplasts/genetics , Cistus/enzymology , Cistus/genetics , Diterpenes/chemistry , Plant Proteins/genetics , Transformation, Genetic
15.
Front Chem ; 5: 50, 2017.
Article in English | MEDLINE | ID: mdl-28744455

ABSTRACT

Ascorbic acid (AsA) is an essential compound present in almost all living organisms that has important functions in several aspects of plant growth and development, hormone signaling, as well as stress defense networks. In recent years, the genetic regulation of AsA metabolic pathways has received much attention due to its beneficial role in human diet. Despite the great variability within species, genotypes, tissues and developmental stages, AsA accumulation is considered to be controlled by the fine orchestration of net biosynthesis, recycling, degradation/oxidation, and/or intercellular and intracellular transport. To date, several structural genes from the AsA metabolic pathways and transcription factors are considered to significantly affect AsA in plant tissues, either at the level of activity, transcription or translation via feedback inhibition. Yet, all the emerging studies support the notion that the steps proceeding through GDP-L-galactose phosphorylase and to a lesser extent through GDP-D-mannose-3,5-epimerase are control points in governing AsA pool size in several species. In this mini review, we discuss the current consensus of the genetic regulation of AsA biosynthesis and recycling, with a focus on horticultural crops. The aspects of AsA degradation and transport are not discussed herein. Novel insights of how this multifaceted trait is regulated are critical to prioritize candidate genes for follow-up studies toward improving the nutritional value of fruits and vegetables.

16.
Nat Commun ; 7: 12942, 2016 10 05.
Article in English | MEDLINE | ID: mdl-27703160

ABSTRACT

Rosemary extracts containing the phenolic diterpenes carnosic acid and its derivative carnosol are approved food additives used in an increasingly wide range of products to enhance shelf-life, thanks to their high anti-oxidant activity. We describe here the elucidation of the complete biosynthetic pathway of carnosic acid and its reconstitution in yeast cells. Cytochrome P450 oxygenases (CYP76AH22-24) from Rosmarinus officinalis and Salvia fruticosa already characterized as ferruginol synthases are also able to produce 11-hydroxyferruginol. Modelling-based mutagenesis of three amino acids in the related ferruginol synthase (CYP76AH1) from S. miltiorrhiza is sufficient to convert it to a 11-hydroxyferruginol synthase (HFS). The three sequential C20 oxidations for the conversion of 11-hydroxyferruginol to carnosic acid are catalysed by the related CYP76AK6-8. The availability of the genes for the biosynthesis of carnosic acid opens opportunities for the metabolic engineering of phenolic diterpenes, a class of compounds with potent anti-oxidant, anti-inflammatory and anti-tumour activities.


Subject(s)
Abietanes/biosynthesis , Rosmarinus/metabolism , Salvia/metabolism , Abietanes/metabolism , Anti-Inflammatory Agents/chemistry , Antineoplastic Agents/chemistry , Antioxidants/chemistry , Escherichia coli/metabolism , Genetic Vectors , Humans , Magnetic Resonance Spectroscopy , Mutagenesis , Mutagenesis, Site-Directed , Mutation , Oxidants/chemistry , Oxygen , Phylogeny , Saccharomyces cerevisiae/metabolism , Spectrometry, Mass, Electrospray Ionization
17.
Plant Mol Biol ; 92(6): 675-687, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27631431

ABSTRACT

Epidermal cell differentiation is a paramount and conserved process among plants. In Arabidopsis, a ternary complex formed by MYB, bHLH transcription factors and TTG1 modulates unicellular trichome morphogenesis. The formation of multicellular glandular trichomes of the xerophytic shrub Cistus creticus that accumulate labdane-type diterpenes, has attained much attention renowned for its medicinal properties. Here, we show that C. creticus TTG1 (CcTTG1) interacts with the SQUAMOSA PROMOTER BINDING PROTEIN-LIKE (SPLA/B) proteins, putative homologs of AtSPL4/5 that in turn interact with AtTTG1. These interactions occur between proteins from evolutionarily distant species supporting the conserved function of TTG1-SPL complex. Overexpression of AtSPL4 and AtSPL5 decreased the expression of GLABRA2 (AtGL2), the major regulator of trichome morphogenesis, resulting in trichome reduction on the adaxial surface of cauline leaves, thereby illuminating the significance of TTG1-SPLs interactions in trichome formation control. AtGL2 and AtSPL4 have opposite expression patterns during early stages of leaf development. We postulate an antagonistic effect between SPLs and the heterogeneous MYB-bHLH factors binding to TTG1. Hence, the SPLs potentially rearrange the complex, attenuating its transcriptional activity to control trichome distribution.


Subject(s)
Cistus/metabolism , Gene Expression Regulation, Plant , Plant Proteins/metabolism , Transcription Factors/metabolism , Trichomes/metabolism , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Cistus/genetics , Plant Proteins/genetics , Plants, Genetically Modified/genetics , Plants, Genetically Modified/metabolism , Protein Binding , Transcription Factors/genetics , Trichomes/genetics
18.
BMC Genomics ; 16: 935, 2015 Nov 14.
Article in English | MEDLINE | ID: mdl-26572682

ABSTRACT

BACKGROUND: Salvia diterpenes have been found to have health promoting properties. Among them, carnosic acid and carnosol, tanshinones and sclareol are well known for their cardiovascular, antitumor, antiinflammatory and antioxidant activities. However, many of these compounds are not available at a constant supply and developing biotechnological methods for their production could provide a sustainable alternative. The transcriptome of S.pomifera glandular trichomes was analysed aiming to identify genes that could be used in the engineering of synthetic microbial systems. RESULTS: In the present study, a thorough metabolite analysis of S. pomifera leaves led to the isolation and structure elucidation of carnosic acid-family metabolites including one new natural product. These labdane diterpenes seem to be synthesized through miltiradiene and ferruginol. Transcriptomic analysis of the glandular trichomes from the S. pomifera leaves revealed two genes likely involved in miltiradiene synthesis. Their products were identified and the corresponding enzymes were characterized as copalyl diphosphate synthase (SpCDS) and miltiradiene synthase (SpMilS). In addition, several CYP-encoding transcripts were identified providing a valuable resource for the identification of the biosynthetic mechanism responsible for the production of carnosic acid-family metabolites in S. pomifera. CONCLUSIONS: Our work has uncovered the key enzymes involved in miltiradiene biosynthesis in S. pomifera leaf glandular trichomes. The transcriptomic dataset obtained provides a valuable tool for the identification of the CYPs involved in the synthesis of carnosic acid-family metabolites.


Subject(s)
Metabolome/genetics , Salvia/genetics , Terpenes/metabolism , Transcriptome/genetics , Trichomes/genetics , Cytochrome P-450 Enzyme System/classification , Cytochrome P-450 Enzyme System/genetics , Diterpenes/metabolism , Molecular Sequence Annotation , Molecular Structure , Plant Leaves/metabolism , Salvia/metabolism , Terpenes/chemistry
19.
PLoS One ; 10(5): e0124106, 2015.
Article in English | MEDLINE | ID: mdl-26020634

ABSTRACT

Carnosic acid (CA) is a phenolic diterpene with anti-tumour, anti-diabetic, antibacterial and neuroprotective properties that is produced by a number of species from several genera of the Lamiaceae family, including Salvia fruticosa (Cretan sage) and Rosmarinus officinalis (Rosemary). To elucidate CA biosynthesis, glandular trichome transcriptome data of S. fruticosa were mined for terpene synthase genes. Two putative diterpene synthase genes, namely SfCPS and SfKSL, showing similarities to copalyl diphosphate synthase and kaurene synthase-like genes, respectively, were isolated and functionally characterized. Recombinant expression in Escherichia coli followed by in vitro enzyme activity assays confirmed that SfCPS is a copalyl diphosphate synthase. Coupling of SfCPS with SfKSL, both in vitro and in yeast, resulted in the synthesis miltiradiene, as confirmed by 1D and 2D NMR analyses (1H, 13C, DEPT, COSY H-H, HMQC and HMBC). Coupled transient in vivo assays of SfCPS and SfKSL in Nicotiana benthamiana further confirmed production of miltiradiene in planta. To elucidate the subsequent biosynthetic step, RNA-Seq data of S. fruticosa and R. officinalis were searched for cytochrome P450 (CYP) encoding genes potentially involved in the synthesis of the first phenolic compound in the CA pathway, ferruginol. Three candidate genes were selected, SfFS, RoFS1 and RoFS2. Using yeast and N. benthamiana expression systems, all three where confirmed to be coding for ferruginol synthases, thus revealing the enzymatic activities responsible for the first three steps leading to CA in two Lamiaceae genera.


Subject(s)
Abietanes/biosynthesis , Plant Proteins/genetics , Rosmarinus/enzymology , Salvia/enzymology , Alkyl and Aryl Transferases/genetics , Alkyl and Aryl Transferases/metabolism , Cloning, Molecular , Gene Expression Profiling , Plant Leaves/enzymology , Plant Leaves/genetics , Plant Proteins/metabolism , Rosmarinus/genetics , Salvia/genetics , Sequence Analysis, RNA
20.
Metab Eng ; 27: 65-75, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25446975

ABSTRACT

Terpenes have numerous applications, ranging from pharmaceuticals to fragrances and biofuels. With increasing interest in producing terpenes sustainably and economically, there has been significant progress in recent years in developing methods for their production in microorganisms. In Saccharomyces cerevisiae, production of the 20-carbon diterpenes has so far proven to be significantly less efficient than production of their 15-carbon sesquiterpene counterparts. In this report, we identify the modular structure of geranylgeranyl diphosphate synthesis in yeast to be a major limitation in diterpene yields, and we engineer the yeast farnesyl diphosphate synthase Erg20p to produce geranylgeranyl diphosphate. Using a combination of protein and genetic engineering, we achieve significant improvements in the production of sclareol and several other isoprenoids, including cis-abienol, abietadiene and ß-carotene. We also report the development of yeast strains carrying the engineered Erg20p, which support efficient isoprenoid production and can be used as a dedicated chassis for diterpene production or biosynthetic pathway elucidation. The design developed here can be applied to the production of any GGPP-derived isoprenoid and is compatible with other yeast terpene production platforms.


Subject(s)
Diterpenes/metabolism , Geranyltranstransferase/biosynthesis , Metabolic Engineering , Saccharomyces cerevisiae Proteins/biosynthesis , Saccharomyces cerevisiae/enzymology , Geranyltranstransferase/genetics , Polyisoprenyl Phosphates/biosynthesis , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...