Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
J Hazard Mater ; 211-212: 304-16, 2012 Apr 15.
Article in English | MEDLINE | ID: mdl-21999989

ABSTRACT

A chemical vapour deposition (CVD) based innovative approach was applied with the purpose to develop composite TiO(2) photocatalytic nanofiltration (NF) membranes. The method involved pyrolytic decomposition of titanium tetraisopropoxide (TTIP) vapor and formation of TiO(2) nanoparticles through homogeneous gas phase reactions and aggregation of the produced intermediate species. The grown nanoparticles diffused and deposited on the surface of γ-alumina NF membrane tubes. The CVD reactor allowed for online monitoring of the carrier gas permeability during the treatment, providing a first insight on the pore efficiency and thickness of the formed photocatalytic layers. In addition, the thin TiO(2) deposits were developed on both membrane sides without sacrificing the high yield rates. Important innovation was also introduced in what concerns the photocatalytic performance evaluation. The membrane efficiency to photo degrade typical water pollutants, was evaluated in a continuous flow water purification device, applying UV irradiation on both membrane sides. The developed composite NF membranes were highly efficient in the decomposition of methyl orange exhibiting low adsorption-fouling tendency and high water permeability.


Subject(s)
Filtration/instrumentation , Membranes, Artificial , Titanium/chemistry , Water Pollutants, Chemical/chemistry , Water Purification/instrumentation , Aluminum Oxide/chemistry , Azo Compounds/chemistry , Azo Compounds/radiation effects , Catalysis , Coloring Agents/chemistry , Coloring Agents/radiation effects , Photolysis , Ultraviolet Rays , Water Pollutants, Chemical/radiation effects , Water Purification/methods
2.
J Nanosci Nanotechnol ; 10(9): 5971-80, 2010 Sep.
Article in English | MEDLINE | ID: mdl-21133135

ABSTRACT

Palladium is usually supported on porous materials in the form of nanoparticles. The hydrogen storage capacity of such a system is usually much higher than the separated capacity of the metal (approximately 0.7 H/Pd) and the support. Pd nanoparticles provide a source of hydrogen atoms by dissociation. The atomic hydrogen spills over from the Pd structure to the support via surface diffusion and this phenomenon is known as hydrogen spillover. In this study commercial SWNTs were dispersed in PEG 200 solution. Then the precursor PdCl2 in PEG 200 was added and the whole left to react under stirring with reflux at 200 degrees C for 1 h. Succeeding washings with ethanol and centrifugation followed for several times and finally the sample was dried at 60 degrees C. Through this procedure a 3 wt% Pd loading was achieved whereas the TEM derived nanoparticle size distribution indicated a 50% percentage of Pd nanoparticles with diameter less than 8 nm. Hydrogen isotherms up to 2 MPa were carried out with the gravimetric method. The defined storage capacity of 1.2 wt% at 0.2 MPa was quite satisfactory. However, a 0.2 wt% portion of this storage capacity was attributed to the formation of water molecules through reaction of H atoms with the dissociatively adsorbed oxygen atoms on the Pd nanoparticles. This conclusion was educed from a series of thermal desorption experiments following the H2 adsorption/desorption cycles and regeneration. Through this set of experiments several other important parameters were defined as the temperature for complete hydrogen desorption and the optimum conditions for PEG removal.

3.
J Hazard Mater ; 162(2-3): 1347-54, 2009 Mar 15.
Article in English | MEDLINE | ID: mdl-18653278

ABSTRACT

The binary adsorption of Cu(2+)-Cd(2+), Pb(2+)-Cd(2+) and Pb(2+)-Cu(2+) mixtures onto Ca-Alginate beads, prepared from Laminaria digitata, was studied using batch experiments. Competitive sorption models including extended Sips, extended Langmuir, Jain and Snoeyink modified Langmuir (JS modified) as well as Ideal Adsorpted Solution Theory (IAST) models were applied to predict the binary adsorption using single component adsorption parameters. The extended and the JS modified Langmuir approaches provide excellent prediction of the binary adsorption, while the extended Sips fails to predict the experimental data, giving only fair results in the case on Pb(2+)-Cu(2+) mixtures. On the contrary, the IAST models, though they are more complicated, provide less accurate estimation of sorption in binary metal ion solutions. In general, single component adsorption parameters can be effectively used for the prediction of a materials adsorption performance in binary metal ion solutions.


Subject(s)
Alginates/chemistry , Cadmium/chemistry , Copper/chemistry , Lead/chemistry , Thermodynamics , Adsorption , Glucuronic Acid/chemistry , Hexuronic Acids/chemistry , Models, Theoretical
4.
Pharm Res ; 17(9): 1085-91, 2000 Sep.
Article in English | MEDLINE | ID: mdl-11087040

ABSTRACT

PURPOSE: Generation of valuable information about the biphasic geometrical configuration of porcine stratum corneum from Very Small Angle Neutron Scattering (VSANS) data and investigation of its effect on the corresponding effective diffusivity. METHODS: Spectra of porcine stratum corneum are mathematically transformed in order to obtain the corresponding auto-correlation function (ACF). Model stratum corneum structures, matching this experimentally determined ACF, are then produced based on the "brick-and-mortar" configuration. The effective diffusivity through these model domains is calculated using an appropriate numerical method. RESULTS: The most appropriate geometry of porcine stratum corneum's lipid and protein phases in a "brick-and-mortar" configuration is quantitatively determined and correlated with the barrier properties (diffusivity) of the stratum corneum model structures. CONCLUSIONS: The ACF analysis indicates the most appropriate values for the dimensions of the corneocyte thickness and the surrounding lipid gap, while the corneocyte length is estimated from the diffusion study.


Subject(s)
Epidermis/metabolism , Models, Biological , Neutrons , Animals , Biological Transport/physiology , Diffusion , Swine
5.
J Control Release ; 51(2-3): 313-25, 1998 Feb 12.
Article in English | MEDLINE | ID: mdl-9685929

ABSTRACT

A comprehensive two phase model is developed to describe the sustained release of a solute or drug from a biphasic hydrogel substrate. Such a material consists of a continuous hydrophilic phase (polymer backbone in water) and a dispersion of spherical microdomains made of the hydrophobic side chains of the polymer organised in a micelle like fashion. The solute or drug is assumed to be encapsulated within the dispersed microdomains, and to diffuse from the interior to the surface of the microdomain where it exchanges following a Langmuir isotherm. Mass transfer to the bulk phase occurs by desorption of the drug from the surface through a driving force that is proportional to the difference of surface and bulk concentration. Accordingly the drug is released to the surroundings by diffusion through the bulk. Depending on the values of the Langmuir constant and assuming well stirred behaviour in the interior of the microdomain, the present model results in either of the two asymptotic models developed in previous studies. The results of a parametric study show that the desired steady state flux of a specific drug to the surroundings may be obtained given appropriate values of structural properties of the material. This conclusion is further supported when using this model to simulate earlier experimental results. The polymer structural properties can be manipulated easily during the fabrication of dispersed-phase networks, as indicated by preliminary experiments.


Subject(s)
Delayed-Action Preparations/chemistry , Polymers/chemistry , Diffusion , Gels , Micelles , Models, Chemical
7.
Bioseparation ; 1(1): 69-88, 1990.
Article in English | MEDLINE | ID: mdl-1368162

ABSTRACT

A restricted diffusion model is constructed and solved in order to study the permeability of large adsorbate molecules in the pores of affinity chromatography media, when the adsorbate molecules are adsorbed onto immobilized ligands. The combined effects of steric hindrance at the entrance to the pores and frictional resistance within the pores, as well as the effects of pore size distribution, pore connectivity of the adsorbent, molecular size of adsorbate and ligand, and the fractional saturation of adsorption sites (ligands), are considered. Affinity adsorbents with dilute and high ligand concentrations are examined, and the permeability of the adsorbate in porous networks of connectivity nT is studied by means of effective medium approximation (EMA) numerical solutions. As expected, the permeability of the adsorbate decreases as the size of the adsorbate and/or ligand molecule increases. The permeability also decreases when the fractional saturation of the ligands increases, as well as when the pore connectivity of the network decreases. The dependence of the permeability on the pore connectivity tends to be less marked in adsorbents with concentrated ligand than in porous media with dilute ligand concentration. The conditions are also presented for which the percolation threshold is attained in a number of different systems. The restricted diffusion model and results of this work may be of importance in studies involving the modeling, prediction of the dynamic behavior, design, and control of affinity chromatography (biospecific adsorption) systems employing porous adsorbents. The theoretical results may also have important implications in the selection of a ligand as well as in the selection and construction of an affinity porous matrix, so that the adsorbate of interest can be efficiently separated from a given solution. Furthermore, with appropriate modifications this restricted diffusion model may be used in studies involving the immobilization of ligands or enzymes in porous solids.


Subject(s)
Chromatography, Affinity , Adsorption , Diffusion , Ligands , Models, Theoretical , Permeability , Terminology as Topic
SELECTION OF CITATIONS
SEARCH DETAIL
...