Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 30
Filter
Add more filters










Publication year range
1.
Inorg Chem ; 56(24): 15081-15090, 2017 Dec 18.
Article in English | MEDLINE | ID: mdl-29193969

ABSTRACT

Several porphyrin dimers linked by metal ions were prepared. One trimeric compound was also isolated and one porphyrin dimer linked by palladium(II) could be structurally characterized. In solution, the size of the new compounds was estimated by DOSY NMR techniques. These compounds all contained long aliphatic chains (O-C12H25), which were used to assemble them at a highly oriented pyrolytic graphite (HOPG)/liquid interface. The highly ordered arrays were visualized by scanning tunneling microscopy (STM).

2.
Chemistry ; 21(38): 13437-44, 2015 Sep 14.
Article in English | MEDLINE | ID: mdl-26270238

ABSTRACT

The assembly of imidazole-functionalized phenanthroline-strapped zinc porphyrins (ZnPorphen) with alkyl or polyethylene glycol (PEG) side chains was studied in solution and by AFM after casting on highly oriented pyrolytic graphite (HOPG) or mica. The nature of the solvent and its evaporation time influenced the morphology of the objects observed. On HOPG, short rods of about 100 nm were observed after fast evaporation of solutions of the alkyl derivatives in CHCl3 , THF, or pyridine, whereas islands of aligned rows of longer wires were obtained from methylcyclohexane (MCH). Slow evaporation of MCH led to a three-dimensional assembly. The PEG porphyrin assembled into short wires on HOPG or fibers on mica after slow evaporation of solutions in THF. This study shows the role of surface-molecule interactions in the interfacial assembly of ZnPorphen derivatives and contributes to understanding the parameters that control their noncovalent assembly into molecular wires on a surface.

4.
Chemistry ; 19(34): 11293-300, 2013 Aug 19.
Article in English | MEDLINE | ID: mdl-23839774

ABSTRACT

We have developed a high-yielding synthesis of meso-tetraalkylporphyrins, which previously have been obtained only in lower yields. By employing Montmorrilonite K10 as the acid catalyst and 3 Šmolecular sieves as the dehydrating agent, yields that reached 70 % could be achieved with some aliphatic aldehydes. The free-base porphyrins with decyl (C10) or longer chains were imaged at the single-molecule level at the solvent/surface interface. Highly oriented pyrolytic graphite (HOPG) was used as a π-stacking surface, whereas 1-phenyloctane and 1-phenylnonane were used as solvents. An odd-even effect was observed from C13 to C16. For C13 a single-crystal X-ray structure allowed an unprecedented insight into how packing from two dimensions is expanded into a three-dimensional crystal lattice.

5.
Chemistry ; 19(5): 1592-8, 2013 Jan 28.
Article in English | MEDLINE | ID: mdl-23307620

ABSTRACT

Developing new strategies for controlling polymer conformations through precise molecular recognition can potentially generate a machine-like motion that is dependent on molecular information-an important process for the preparation of new intelligent nanomaterials (e.g., polymer-based nanomachines) in the field bordering between polymer chemistry and conventional supramolecular sciences. Herein, we propose a strategy to endow a helical polymer chain with dynamic spring-like (contraction/expansion) motion through the one-dimensional self-assembly (aggregation/disaggregation) of peripheral amphiphilic molecules. In this developing system, we employed a semi-artificial helical polysaccharide presenting peripheral amphiphilic chlorophyll units as a power device that undergoes contractive motion in aqueous media, driven by strong π-π interactions of its chlorophyll units or by cooperative molecular recognition of bipyridyl-type ligands through pairs of chlorophyll units, thereby converting molecular information into the regulated motion of a spring. In addition, this system also undergoes expansive motion through coordination of pyridine. We anticipate that this strategy will be applicable (when combined with the established wrapping chemistry of the helical polysaccharide) to the development of, for example, drug carriers (e.g., nano-syringes), actuators (stimuli-responsive films), and directional transporters (nano-railways), thereby extending the frontiers of supramolecular science.


Subject(s)
Chlorophyll/chemistry , DNA-Binding Proteins/chemistry , Polymers/chemistry , Polysaccharides/chemistry , Ligands , Molecular Conformation , Nanotechnology , Organic Chemistry Phenomena , Protein Structure, Secondary
6.
J Phys Chem A ; 117(3): 566-78, 2013 Jan 24.
Article in English | MEDLINE | ID: mdl-23259595

ABSTRACT

The fluorescence spectroscopic properties of (E,E,E)-1,6-di(n-naphthyl)-1,3,5-hexatrienes (1, n = 1; 2, n = 2) have been investigated in solution and in the solid state. In solution, the absorption maxima (λ(a)) of the lowest-energy band (1, 374 nm; 2, 376 nm in methylcyclohexane) were similar for 1 and 2, whereas the fluorescence maxima (λ(f)) (1, 545 nm; 2, 453 nm) and quantum yields (φ(f)) (1, 0.046; 2, 0.68) were very different regardless of the solvent polarity. The fluorescence spectrum of 1 was independent of the excitation wavelength (λ(ex)), whereas the spectrum of 2 was weakly λ(ex)-dependent. In the solid state, the spectroscopic properties of 1 and 2 were similar (λ(a) = 437-438 nm, λ(f) = 496-505 nm, φ(f) = 0.04-0.07). The origins of emission are both considered to be mainly monomeric. With the help of single-crystal X-ray structure analysis and ab initio quantum chemical calculation, we conclude that the red-shifted and weak emission of 1 in solution originates from a planar excited state having small charge transfer character, reached from a twisted Franck-Condon state by the excited-state geometrical relaxation accompanied by the internal rotation around the naphthalene (Ar)-CH single bond. The similar fluorescence properties of 1 and 2 in the solid state can be attributed to the restriction of the geometrical relaxation. The effects of the Ar-CH rotational isomerism on the fluorescence properties in solution, for 2 in particular, are also discussed.


Subject(s)
Fluorescence , Naphthalenes/chemistry , Polyenes/chemistry , Crystallography, X-Ray , Models, Molecular , Molecular Structure , Quantum Theory , Rotation , Spectrometry, Fluorescence , Stereoisomerism
7.
Org Biomol Chem ; 10(40): 8087-94, 2012 Oct 28.
Article in English | MEDLINE | ID: mdl-22965495

ABSTRACT

A series of isobutenyl compounds possessing various alkyl chain lengths (C(n)-1) with a carbon number of n = 14-21 were synthesized and their two-dimensional (2D) structures were systematically studied using scanning tunnelling microscopy (STM) at a highly oriented pyrolytic graphite (HOPG)/solvent interface. Two kinds of solvent, such as 1-phenyloctane (PO) and 1-phenylnonane (PN), were selected to examine the 2D structures by changing the alkyl chain length of the isobutenyl compounds. At the HOPG/PO interface, C(n)-1 molecules with shorter alkyl chains (n = 14-17) showed the same zig-zag shaped 2D structure regardless of the alkyl chain length, whereas an odd-even effect was recognized in C(n)-1 compounds with longer alkyl chains (n = 18-21) displaying the wavy and tripod structures, alternately. This odd-even effect was also observed at the HOPG/PN interface rather more distinctly. These results suggest that there is a specific alkyl chain length range that shows the odd-even effect in the present 2D system. After a tandem Claisen rearrangement (TCR), the 2D structures of all the C(n)-2 compounds formed were converged into the same linear structure, i.e. the odd-even effect was cancelled by the conformational limitation induced by the TCR.


Subject(s)
Alkenes/chemistry , Alkenes/chemical synthesis , Microscopy, Scanning Tunneling , Molecular Structure , Solvents/chemistry
8.
Org Lett ; 14(8): 1998-2001, 2012 Apr 20.
Article in English | MEDLINE | ID: mdl-22463594

ABSTRACT

Carefully designed porphyrin building blocks assemble through selective imidazole binding in various solvents to form linear multiporphyrin objects. From a dynamic mixture of monomers, dimers, and oligomers, linear objects were observed on a highly oriented pyrolitic graphite (HOPG) surface. On the surface, the objects' morphology clearly depended on the solvent used for deposition and was modified upon heating.

9.
J Phys Chem B ; 114(50): 16718-22, 2010 Dec 23.
Article in English | MEDLINE | ID: mdl-21114251

ABSTRACT

By using a simple anthracene derivative with four alkoxy tails, a two-dimensional patterned surface was fabricated. The two-dimensional structures were directly visualized by scanning tunneling microscopy (STM) at the solid/liquid interface. The anthracene derivative formed highly ordered structures displaying cavities into which solvent molecules of 1-phenyloctane were coadsorbed. The functionality of the patterned surface was demonstrated by activating host-guest chemistry as the solvent molecules could be replaced by coronene, whose size is almost identical to the cavities formed by the anthracene derivative. Furthermore, [4 + 4] photodimerization of the anthracene derivative was performed at the solid/liquid interface and revealed that the physical height and electron density of the states were changed, resulting in the increase of an apparent height in the STM images. We demonstrate thus that the porous network of the two-dimensional pattern created by the anthracene derivative can be applied for selectively incorporating guest molecules and for photoprocessing.

10.
Chem Commun (Camb) ; 46(42): 8008-10, 2010 Nov 14.
Article in English | MEDLINE | ID: mdl-20871916

ABSTRACT

Novel two-dimensional C3 symmetric (tripod) structures are fabricated from isobutenyl compounds possessing long alkyl chains. Alteration from tripod to wavy structures is accomplished by odd-even effect, and tandem Claisen rearrangement allows the transformation to the linear structures.

11.
J Nanosci Nanotechnol ; 10(2): 803-8, 2010 Feb.
Article in English | MEDLINE | ID: mdl-20352721

ABSTRACT

Scanning tunneling microscopy (STM) of mono- and bisurea-functionalized oligo(p-phenylenevinylene)s at solid/liquid interface visualized two-dimensionally-ordered double columnar structures of pi-conjugated segments scaffolded by one-dimensional supramolecular polymerization of urea hydrogen-bonding units. In contrast to a persistent alignment of the bisurea compound supported by twofold intermolecular urea-urea hydrogen-bonding, the building blocks in the monourea double columns shows dynamic fluctuation and defects because of their rotational motion around urea-urea hydrogen-bonding axis and/or adsorption-desorption of the individual molecules from the surface. Self-assembled structures of mono- and bisurea compounds at solid/liquid interface revealed by STM can be related to their gelation abilities in organic solvents.

12.
Langmuir ; 26(5): 3376-81, 2010 Mar 02.
Article in English | MEDLINE | ID: mdl-20175574

ABSTRACT

Bipyridine derivatives (bpys) with various number and length of peripheral alkyl chains (with carbon numbers of n = 11-17) were synthesized, and their self-assembled monolayers were observed by scanning tunneling microscopy (STM) at a 1-phenyloctane/highly oriented pyrolytic graphite (HOPG) interface. The effects of the number, the substitution position, and the length of alkyl chains on the two-dimensional structures were systematically studied. Bpys substituted by a single alkyl chain in the p-position on each side adopted an almost linear form with zigzag-type alignment of the pi-conjugated unit, whereas, in the case of m-substitution, the bpys showed Z-shaped morphology with interdigitated alkyl chains. In both cases, no odd-even alkyl chain length effects were observed. The bpys with double alkyl chains at m- and p-positions displayed odd-even alkyl chain effects, suggesting that the formation of two-dimensional structure is dominated by the interactions between alkyl chains. Bpys with triple alkyl chains at o-, m-, and p-positions also showed odd-even alkyl chain effects, but only for the higher number of carbon atoms in the alkyl chain unit (n = 14-17). These results indicate that concerted intermolecular interactions of the alkyl chain unit introduce the odd-even chain length effect on the self-assembled two-dimensional structure. After coordination of PdCl(2), odd-even effects were quenched, and bpys were converged into the same lamellar structure, in which the molecules are almost linear. All the structural differences due to the odd-even alkyl chain length effect were explained in terms of intermolecular and molecule-substrate interactions.

13.
Biomacromolecules ; 10(4): 1013-8, 2009 Apr 13.
Article in English | MEDLINE | ID: mdl-19298077

ABSTRACT

Thin films of poly(L-lactide) (PLLA)/atactic poly(3-hydroxybutyrate) (ataPHB) blends with different miscibility were prepared and characterized by using differential scanning calorimetry (DSC) and atomic force microscopy (AFM). The DSC analysis suggested that the blend thin films exhibited different phase structures, such as miscible, partially miscible, and immiscible depending on the blending ratio as well as molecular weight of ataPHB component. The different miscibility was further confirmed by the surface morphological observation by AFM. Both the immiscible and partially miscible blends of PLLA/ataPHB revealed the formation of phase-separated morphology of PLLA and ataPHB components, whereas the homogeneous surface morphology was observed for the miscible blend. On the basis of the changes in the depth profile from the surface level of the thin films, the enzymatic degradation rates of the PLLA and ataPHB domains were determined in the presence of either PHB depolymerase or proteinase K, respectively. The erosion rate of PLLA/ataPHB blends was strongly dependent on the blend composition and the degree of dispersion of the two components. The enzymatic degradation behaviors were discussed in terms of phase structure, molecular mobility, and retardation effect of the components in the blends.


Subject(s)
Carboxylic Ester Hydrolases/metabolism , Endopeptidase K/metabolism , Hydroxybutyrates/chemistry , Polyesters/chemistry , Polymers/chemistry , Calorimetry, Differential Scanning , Microscopy, Atomic Force , Solubility , Surface Properties
14.
J Am Chem Soc ; 131(15): 5408-10, 2009 Apr 22.
Article in English | MEDLINE | ID: mdl-19323464

ABSTRACT

Several proteins, such as tobacco mosaic virus coat protein and the beta protein of the bacteriophage lambda, are known to exhibit unique dynamic self-organization processes involving ring-shaped and extended helical nanostructures triggered by chemical stimuli. However, transformation of rings into coils as observed in biological assemblies has never been realized with synthetic molecular building blocks. Oligo(p-phenylenevinylene) functionalized on one end with barbituric acid and on the other end with aliphatic tails self-organizes in aliphatic solvents to form nanorings through hydrogen-bonding and pi-stacking interactions. Upon an increase in concentration, the nanorings transform into rodlike nanostructures, which are considered to be formed through helically coiled objects consisting of quasi-one-dimensional fibers.


Subject(s)
Barbiturates/chemistry , Biomimetics , Nanostructures/chemistry , Phase Transition , Polyvinyls/chemistry , Proteins/chemistry , Capsid Proteins/chemistry , DNA-Binding Proteins/chemistry , Hydrogen Bonding , Protein Conformation , Solvents , Viral Proteins/chemistry
15.
Langmuir ; 25(3): 1633-7, 2009 Feb 03.
Article in English | MEDLINE | ID: mdl-19117477

ABSTRACT

In this paper we demonstrate control over the spacing of surface-modifying probe molecules through the use of labile dendron spacers. During this process, anchor molecules are first adsorbed to a surface, with dendron modifiers attached. Steric interactions of the bulky dendrons control the density of anchor molecules bound to the surface. The dendron branches are subsequently detached from the anchor molecules, and the anchors are chemically modified with probe molecules, resulting in a surface with controlled spacing between probe molecules. Control over this spacing is important when the probe size is small in comparison with the target molecule. This importance is demonstrated for the binding of protein (streptavidin) targets to the probe (biotin) surface. The effect of probe space control on the efficiency of target capture is evaluated by examining the binding of streptavidin to thiolated biotin for a series of mixed monolayers. Surface modification is monitored by Fourier transform infrared reflection absorption spectroscopy (FTIR-RAS). The relative concentration of probe molecules at the surface is measured using X-ray photoelectron spectroscopy (XPS) measurements. Thiolated-biotin surfaces with optimized spacing show an increased capture efficiency for streptavidin relative to surfaces with nonoptimal or no control over probe spacing, as measured by surface plasmon resonance (SPR) spectroscopy. These results are of potential significance for the optimization and fabrication of micro- and nanoarrays used in chemical and biochemical measurements.


Subject(s)
Surface Plasmon Resonance/methods , Molecular Structure , Spectrum Analysis
16.
Biomacromolecules ; 9(8): 2126-31, 2008 Aug.
Article in English | MEDLINE | ID: mdl-18656977

ABSTRACT

Interaction force of chitin-binding domains (ChBD1 and ChBD2) from a thermostable chitinase onto chitin surface was directly measured by atomic force microscopy (AFM) in a buffer solution. In the force curve measurement, multiple pull-off events were observed for the AFM tips functionalized with either ChBD1 or ChBD2, whereas the AFM tips terminated with nitrilotriacetic acid groups without ChBD showed no interaction peak, suggesting that the detected forces are derived from the binding functions of ChBDs onto the chitin surface. The force curve analyses indicate that the binding force of ChBD2 is stronger than that of ChBD1. This result suggests that ChBD1 and ChBD2 play different roles in adsorption onto chitin surface.


Subject(s)
Chitin/chemistry , Adsorption , Buffers , Catalytic Domain , Chitin/metabolism , Chitinases/chemistry , Hot Temperature , Microscopy, Atomic Force , Peptides/chemistry , Plasmids/metabolism , Polysaccharides/metabolism , Protein Binding , Protein Conformation , Protein Structure, Tertiary , Recombinant Proteins/chemistry , Thermococcus/enzymology
17.
Chem Commun (Camb) ; (13): 1343-5, 2007 Apr 07.
Article in English | MEDLINE | ID: mdl-17377676

ABSTRACT

Scanning tunneling microscopy (STM) observations reveal that bipyridine derivatives which exhibit various two-dimensional structures due to the odd-even chain length effect are converged into a lamellar structure upon metal coordination.

18.
Langmuir ; 22(16): 6910-4, 2006 Aug 01.
Article in English | MEDLINE | ID: mdl-16863238

ABSTRACT

The self-assembled monolayer of bipyridine derivative 1, which has two alkyl chains on each end, at the HOPG/1-phenyloctane interface was studied by in situ scanning tunneling microscopy (STM). The detailed mechanism of a spontaneous change in the monolayer packing pattern by Pd coordination was studied. Uncomplexed 1 existed in a bent form in the monolayer, and the alkyl chains were interdigitated, whereas Pd-complexed 1 was in a straight form and the alkyl chains were not interdigitated. An intermediate state of 1 was successfully observed during metal coordination. The structure was the bent form with noninterdigitated alkyl chains. Equilibrium intermolecular distances reported from ab initio calculations indicate that the molecular width of the central aromatic part of uncomplexed 1 (7.5 A) is substantially smaller than that of the peripheral alkyl chain part (9.2 A). The bent form was suitable for covering up the surface to maximize the packing density. However, the molecular width of the aromatic unit of Pd-complexed 1 (9.1 A) was almost identical to that of the alkyl chain unit (9.2 A). Therefore, Pd-complexed 1 took the straight form in the monolayer. The observation of surface coverage by STM suggests that the bent form increases the packing density by as much as 16% compared with that of the straight form. These results indicate that the control of molecular width can be used to design molecular templates for nanostructure formation.

19.
Biomacromolecules ; 7(6): 1921-8, 2006 Jun.
Article in English | MEDLINE | ID: mdl-16768415

ABSTRACT

Phase structures and enzymatic degradation of poly(l-lactide) (PLLA)/atactic poly(3-hydroxybutyrate) (ata-PHB) blends with different compositions were characterized by using atomic force microscopy (AFM). Differential scanning calorimetry (DSC) thermograms of PLLA/ata-PHB blends with different compositions showed two glass transition temperatures, indicating that the PLLA/ata-PHB blends are immiscible in the melt. Surface morphologies of the thin films for PLLA/ata-PHB blends were determined by AFM. Phase separated morphology was recognized from the AFM topography and phase images. The domain size of the components was dependent on the blend ratio. Enzymatic degradation of the PLLA/ata-PHB blends was performed by using both PHB depolymerase and proteinase K. Either PLLA or ata-PHB domains were eroded depending on the kinds of enzyme. Surface morphologies after enzymatic degradation have revealed the phase structure along the depth direction. Enzymatic adsorption of PHB depolymerase was examined on the surface of PLLA/ata-PHB blends. The enzyme molecules were found on both domains of the binary blends. The larger number of enzyme molecules was found on the PLLA domains relative to those on the ata-PHB domains, suggesting the higher affinity of the enzyme against PLLA domain.


Subject(s)
Carboxylic Ester Hydrolases/chemistry , Endopeptidase K/chemistry , Hydroxybutyrates/chemistry , Microscopy, Atomic Force/methods , Polyesters/chemistry , Adsorption , Calorimetry, Differential Scanning/methods , Materials Testing , Membranes, Artificial , Microscopy, Phase-Contrast , Particle Size , Sensitivity and Specificity , Surface Properties , Temperature , Time Factors
20.
J Phys Chem B ; 110(18): 9195-203, 2006 May 11.
Article in English | MEDLINE | ID: mdl-16671734

ABSTRACT

Surface potential switching on gold(111) surfaces is induced by complexation/decomplexation reactions of a bipyridine (BP) derivative and palladium(II) chloride, as observed by Kelvin probe force microscopy (KFM). On the basis of the theoretical predictions, a 4-(5-phenylethynyl-2,2'-bipyridine-5'-yl-ethynyl)benzenethiol (PhBP) derivative was synthesized and used as an active monolayer to catch transition metal ions. By using the microcontact printing (CP) technique, micron-size patterned PhBP monolayers, which act as effective hosts to coordinate palladium(II) chloride, were prepared on gold(111) surfaces. The KFM signal decreases by complexation of the Pd(II) chloride in PhBP monolayers and is recovered by removal of Pd ions using an ethylenediamine solution, as confirmed by X-ray photoelectron spectroscopy. This process is reversible, indicating that the surface potential switching is realized by complexation/decomplexation of Pd(II). A CP PhBP monolayer, when it detects the target palladium ion, shows sensitivity for the picomolar level detection judged from surface potential changes in KFM measurements. The dipole moment estimated by the surface potentials is much smaller than the calculated value, indicating that mechanisms for the reduction of the surface dipole moment exist in real monolayers prepared by the CP method.

SELECTION OF CITATIONS
SEARCH DETAIL
...