Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Biomol Ther (Seoul) ; 32(4): 481-491, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38835145

ABSTRACT

Paxlovid is the first approved oral treatment for coronavirus disease 2019 and includes nirmatrelvir, a protease inhibitor targeting the main protease (Mpro) of SARS-CoV-2, as one of the key components. While some specific mutations emerged in Mpro were revealed to significantly reduce viral susceptibility to nirmatrelvir in vitro, there is no report regarding resistance to nirmatrelvir in patients and animal models for SARS-CoV-2 infection yet. We recently developed xenograft tumors derived from Calu-3 cells in immunodeficient mice and demonstrated extended replication of SARS-CoV-2 in the tumors. In this study, we investigated the effect of nirmatrelvir administration on SARS-CoV-2 replication. Treatment with nirmatrelvir after virus infection significantly reduced the replication of the parental SARS-CoV-2 and SARS-CoV-2 Omicron at 5 days post-infection (dpi). However, the virus titers were completely recovered at the time points of 15 and 30 dpi. The virus genomes in the tumors at 30 dpi were analyzed to investigate whether nirmatrelvir-resistant mutant viruses had emerged during the extended replication of SARS-CoV-2. Various mutations in several genes including ORF1ab, ORF3a, ORF7a, ORF7b, ORF8, and N occurred in the SARS-CoV-2 genome; however, no mutations were induced in the Mpro sequence by a single round of nirmatrelvir treatment, and none were observed even after two rounds of treatment. The parental SARS-CoV-2 and its sublineage isolates showed similar IC50 values of nirmatrelvir in Vero E6 cells. Therefore, it is probable that inducing viral resistance to nirmatrelvir in vivo is challenging differently from in vitro passage.

2.
Virus Genes ; 60(3): 251-262, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38587722

ABSTRACT

SARS-CoV-2 Omicron has the largest number of mutations among all the known SARS-CoV-2 variants. The presence of these mutations might explain why Omicron is more infectious and vaccines have lower efficacy to Omicron than other variants, despite lower virulence of Omicron. We recently established a long-term in vivo replication model by infecting Calu-3 xenograft tumors in immunodeficient mice with parental SARS-CoV-2 and found that various mutations occurred majorly in the spike protein during extended replication. To investigate whether there are differences in the spectrum and frequency of mutations between parental SARS-CoV-2 and Omicron, we here applied this model to Omicron. At 30 days after infection, we found that the virus was present at high titers in the tumor tissues and had developed several rare sporadic mutations, mainly in ORF1ab with additional minor spike protein mutations. Many of the mutant isolates had higher replicative activity in Calu-3 cells compared with the original SARS-CoV-2 Omicron virus, suggesting that the novel mutations contributed to increased viral replication. Serial propagation of SARS-CoV-2 Omicron in cultured Calu-3 cells resulted in several rare sporadic mutations in various viral proteins with no mutations in the spike protein. Therefore, the genome of SARS-CoV-2 Omicron seems largely stable compared with that of the parental SARS-CoV-2 during extended replication in Calu-3 cells and xenograft model. The sporadic mutations and modified growth properties observed in Omicron might explain the emergence of Omicron sublineages. However, we cannot exclude the possibility of some differences in natural infection.


Subject(s)
COVID-19 , Lung Neoplasms , Mutation , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Virus Replication , Animals , Virus Replication/genetics , SARS-CoV-2/genetics , SARS-CoV-2/pathogenicity , Mice , Humans , COVID-19/virology , Lung Neoplasms/virology , Lung Neoplasms/genetics , Spike Glycoprotein, Coronavirus/genetics , Disease Models, Animal , Cell Line, Tumor
3.
J Med Virol ; 96(2): e29459, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38345153

ABSTRACT

We recently established a long-term SARS-CoV-2 infection model using lung-cancer xenograft mice and identified mutations that arose in the SARS-CoV-2 genome during long-term propagation. Here, we applied our model to the SARS-CoV-2 Delta variant, which has increased transmissibility and immune escape compared with ancestral SARS-CoV-2. We observed limited mutations in SARS-CoV-2 Delta during long-term propagation, including two predominant mutations: R682W in the spike protein and L330W in the nucleocapsid protein. We analyzed two representative isolates, Delta-10 and Delta-12, with both predominant mutations and some additional mutations. Delta-10 and Delta-12 showed lower replication capacity compared with SARS-CoV-2 Delta in cultured cells; however, Delta-12 was more lethal in K18-hACE2 mice compared with SARS-CoV-2 Delta and Delta-10. Mice infected with Delta-12 had higher viral titers, more severe histopathology in the lungs, higher chemokine expression, increased astrocyte and microglia activation, and extensive neutrophil infiltration in the brain. Brain tissue hemorrhage and mild vacuolation were also observed, suggesting that the high lethality of Delta-12 was associated with lung and brain pathology. Our long-term infection model can provide mutant viruses derived from SARS-CoV-2 Delta and knowledge about the possible contributions of emergent mutations to the properties of new variants.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Animals , Mice , Heterografts , SARS-CoV-2/genetics , Brain
4.
Front Cell Infect Microbiol ; 13: 1280686, 2023.
Article in English | MEDLINE | ID: mdl-38029235

ABSTRACT

Introduction: The spectrum of SARS-CoV-2 mutations have increased over time, resulting in the emergence of several variants of concern. Persistent infection is assumed to be involved in the evolution of the variants. Calu-3 human lung cancer cells persistently grow without apoptosis and release low virus titers after infection. Methods: We established a novel in vivo long-term replication model using xenografts of Calu-3 human lung cancer cells in immunodeficient mice. Virus replication in the tumor was monitored for 30 days and occurrence of mutations in the viral genome was determined by whole-genome deep sequencing. Viral isolates with mutations were selected after plaque forming assays and their properties were determined in cells and in K18-hACE2 mice. Results: After infection with parental SARS-CoV-2, viruses were found in the tumor tissues for up to 30 days and acquired various mutations, predominantly in the spike (S) protein, some of which increased while others fluctuated for 30 days. Three viral isolates with different combination of mutations produced higher virus titers than the parental virus in Calu-3 cells without cytopathic effects. In K18-hACE2 mice, the variants were less lethal than the parental virus. Infection with each variant induced production of cross-reactive antibodies to the receptor binding domain of parental SARS-CoV-2 S protein and provided protective immunity against subsequent challenge with parental virus. Discussion: These results suggest that most of the SARS-CoV-2 variants acquired mutations promoting host adaptation in the Calu-3 xenograft mice. This model can be used in the future to further study SARS-CoV-2 variants upon long-term replication in vivo.


Subject(s)
SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Animals , Humans , Mice , COVID-19/virology , Lung Neoplasms , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics , Cell Line, Tumor
5.
J Med Virol ; 95(3): e28626, 2023 03.
Article in English | MEDLINE | ID: mdl-36856164

ABSTRACT

Peptides are promising therapeutic agents for COVID-19 because of their specificity, easy synthesis, and ability to be fine-tuned. We previously demonstrated that a cell-permeable peptide corresponding to the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Spike C-terminal domain (CD) inhibits the interaction between viral spike and nucleocapsid proteins that results in SARS-CoV-2 replication in vitro. Here, we used docking studies to design R-t-Spike CD(D), a more potent short cell-penetrating peptide composed of all D-form amino acids and evaluated its inhibitory effect against the replication of SARS-CoV-2 S clade and other variants. R-t-Spike CD(D) was internalized into Vero cells and Calu-3 cells and suppressed the replication of SARS-CoV-2 S clade, delta variant, and omicron variant with higher potency than the original peptide. In hemizygous K18-hACE2 mice, intratracheal administration of R-t-Spike CD(D) effectively delivered the peptide to the trachea and lungs, whereas intranasal administration delivered the peptide mostly to the upper respiratory system and stomach, and a small amount to the lungs. Administration by either route reduced viral loads in mouse lungs and turbinates. Furthermore, intranasally administered R-t-Spike CD(D) mitigated pathological change in the lungs and increased the survival of mice after infection with the SARS-CoV-2 S clade or delta variant. Our data suggest that R-t-Spike CD(D) has potential as a therapeutic agent against SARS-CoV-2 infection.


Subject(s)
COVID-19 , Cell-Penetrating Peptides , Chlorocebus aethiops , Animals , Mice , Cell-Penetrating Peptides/pharmacology , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Vero Cells
6.
Viruses ; 15(1)2022 12 21.
Article in English | MEDLINE | ID: mdl-36680068

ABSTRACT

The coronavirus disease 2019 pandemic, elicited by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is ongoing. Currently accessible antigen-detecting rapid diagnostic tests are limited by their low sensitivity and detection efficacy due to evolution of SARS-CoV-2 variants. Here, we produced and characterized an anti-SARS-CoV-2 nucleocapsid (N) protein-specific monoclonal antibody (mAb), 2A7H9. Monoclonal antibody 2A7H9 and a previously developed mAb, 1G10C4, have different specificities. The 2A7H9 mAb detected the N protein of S clade, delta, iota, and mu but not omicron, whereas the 1G10C4 antibody recognized the N protein of all variants under study. In a sandwich enzyme-linked immunosorbent assay, recombinant N protein bound to the 1G10C4 mAb could be detected by both 1G10C4 and 2A7H9 mAbs. Similarly, N protein bound to the 2A7H9 mAb was detected by both mAbs, confirming the existence of dimeric N protein. While the 1G10C4 mAb detected omicron and mu with higher efficiency than S clade, delta, and iota, the 2A7H9 mAb efficiently detected all the strains except omicron, with higher affinity to S clade and mu than others. Combined use of 1G10C4 and 2A7H9 mAb resulted in the detection of all the strains with considerable sensitivity, suggesting that antibody combinations can improve the simultaneous detection of virus variants. Therefore, our findings provide insights into the development and improvement of diagnostic tools with broader specificity and higher sensitivity to detect rapidly evolving SARS-CoV-2 variants.


Subject(s)
COVID-19 , Nucleocapsid Proteins , Humans , Antibodies, Monoclonal , SARS-CoV-2/genetics , COVID-19/diagnosis , Antibodies, Viral , Enzyme-Linked Immunosorbent Assay/methods , Recombinant Proteins , Spike Glycoprotein, Coronavirus
SELECTION OF CITATIONS
SEARCH DETAIL
...