Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Small ; : e2310275, 2024 Jan 14.
Article in English | MEDLINE | ID: mdl-38221708

ABSTRACT

The interfacial carrier non-radiative recombination caused by buried defects in electron transport layer (ETL) material and the energy barrier severely hinders further improvement in efficiency and stability of perovskite solar cells (PSCs). In this study, the effect of the SnO2 ETL doped with choline chloride (CC), acetylcholine chloride (AC), and phosphocholine chloride sodium salt (PCSS) are investigated. These dopants modify the interface between SnO2 ETL and perovskite layer, acting as a bridge through synergistic effects to form uniform ETL films, enhance the interface contact, and passivate defects. Ultimately, compared with CC (which with ─OH) and AC (which with C═O), the PCSS with P═O and sodium ions groups is more beneficial for improving performance. The device based on PCSS-doped SnO2 ETL achieves an efficiency of 23.06% with a high VOC of 1.2 V, which is considerably higher than the control device (20.55%). Moreover, after aging for 500 h at a temperature of 25 °C and relative humidity (RH) of 30-40%, the unsealed device based on SnO2 -PCSS ETL maintains 94% of its initial efficiency, while the control device only 80%. This study provides a meaningful reference for the design and selection of ideal pre-buried additive molecules.

2.
ACS Sens ; 9(1): 171-181, 2024 01 26.
Article in English | MEDLINE | ID: mdl-38159288

ABSTRACT

With the rapid development of the concept of the Internet of Things (IoT), gas sensors with the function of simulating the human sense of smell became irreplaceable as a key element. Among them, ammonia (NH3) sensors played an important role in respiration tests, environmental monitoring, safety, and other fields. However, the fabrication of the high-performance device with high stability and resistance to mechanical damages was still a challenge. In this work, polyurethane (PU) with excellent self-healing ability was applied as the substrate, and the sensor was designed from new sensitive material design and device structure optimization, through applying the organic molecule with groups which could absorb NH3 and the laminated structure to shorten the electronic transmission path to achieve a low resistance state and favorable sensing properties. Accordingly, a room temperature flexible NH3 sensor based on 6,6',6″-(nitrilotris(benzene-4,1-diyl))tris(5-phenylpyrazine-2,3-dicarbonitrile) (TPA-3DCNPZ) was successfully developed. The device could self-heal by means of a thermal evaporation assisted method. It exhibited a detection limit of 1 ppm at 98% relative humidity (RH), as well as great stability, selectivity, bending flexibility, and self-healing properties. The improved NH3 sensing performance under high RH was further investigated by complex impedance plots (CIPs) and density functional theory (DFT), attributing to the enhanced adsorption of NH3. The TPA-3DCNPZ based NH3 sensors proved to have great potential for application on simulated exhaled breath to determine the severity of kidney diseases and the progress of treatment. This work also provided new ideas for the construction of high-performance room temperature NH3 sensors.


Subject(s)
Smart Materials , Humans , Benzene , Temperature , Adsorption , Ammonia
3.
ACS Appl Mater Interfaces ; 15(39): 46483-46492, 2023 Oct 04.
Article in English | MEDLINE | ID: mdl-37748040

ABSTRACT

Organic-inorganic hybrid perovskite solar cells are fabricated using polycrystalline perovskite thin films, which possess high densities of point and surface defects. The surface defects of perovskite thin films are the key factors that affect the device performance. Therefore, the reduction of harmful defects is the primary task for improving device performance. Therefore, in this study, high-quality perovskite thin films are prepared using an ionic liquid, dithiocarbamate diethylamine (DADA), to passivate the interface. The electron-rich sulfur atom in the DADA molecule chelates with the uncoordinated lead ion in the perovskite films, and the diethylammonium cation forms a hydrogen bond with the free iodine ion, which further improves the passivation. The synergistic passivation and improved morphology of the perovskite thin films substantially reduce the number of charged defects on the film surface and prolong the carrier lifetime. In addition, the DADA surface treatment increases the work function of the perovskite film, which is beneficial for carrier transport. Under standard solar-lighting conditions, the power conversion efficiency (PCE) of the device increases from 19.13 to 21.36%, and the fill factor is as high as 83.17%. Owing to both the hydrophobicity of DADA molecules and the passivation of ion defects, the PCE of the device remains above 80%, even for the device stored for 500 h in air at a relative humidity of 65%, and the device stability is substantially improved.

4.
Opt Lett ; 48(7): 1846-1849, 2023 Apr 01.
Article in English | MEDLINE | ID: mdl-37221781

ABSTRACT

In this Letter, we report a bridge-connected three-electrode germanium-on-silicon (Ge-on-Si) avalanche photodiode (APD) array compatible with the complementary metal-oxide semiconductor (CMOS) process. In addition to the two electrodes on the Si substrate, a third electrode is designed for Ge. A single three-electrode APD was tested and analyzed. By applying a positive voltage on the Ge electrode, the dark current of the device can be reduced, and yet the response of the device can be increased. Under a dark current of 100 nA, as the voltage on Ge increases from 0 V to 15 V, the light responsivity is increased from 0.6 A/W to 1.17 A/W. We report, for the first time to the best of our knowledge, the near-infrared imaging properties of an array of three-electrode Ge-on-Si APDs. Experiments show that the device can be used for LiDAR imaging and low-light detection.

5.
ChemSusChem ; 16(7): e202202092, 2023 Apr 06.
Article in English | MEDLINE | ID: mdl-36629755

ABSTRACT

The power conversion efficiency (PCE) of perovskite solar cells (PSCs) has been greatly improved recently. However, in organic-inorganic polycrystalline perovskite films many defects inevitably exist, which limits the PCE and stability of PSCs. Herein, a small organic molecule 2-chlorothiazole-4-carboxylic acid (SN) is spin coated on a perovskite film to enhance the performance of PSCs. We find that the multifunctional molecule SN reacts with under-coordinated Pb2+ ions and I- vacancies because of the presence of the sulfur and nitrogen donor atoms, and the -COOH groups, which are conducive to suppressing charge recombination and passivating defects. Even more, the introduction of the SN layer can effectively adjust the energy level alignment, which is conducive to the separation and extraction of charge carriers in PSCs. Therefore, devices with SN modification show a champion PCE of 22.55 %. Besides, PSCs with SN show impressive stability, retaining 96 % of its initial PCE after storage in ambient air for 500 h.

6.
J Colloid Interface Sci ; 614: 415-424, 2022 May 15.
Article in English | MEDLINE | ID: mdl-35108633

ABSTRACT

The performance of perovskite solar cells (PSCs) can be improved by optimizing the perovskite film quality and electron transfer layers (ETLs). In this study, high-efficient PSCs with multi-cation hybrid electron transport layer (SnO2@Na:Cs ETL) were fabricated using continuous spin-coating. Compared to the pristine SnO2, the power conversion efficiency (PCE) of device based on SnO2@Na:Cs ETL have reached 22.06% (with an open circuit voltage of 1.13 V), up approximately 21%. The photovoltaic performance of the device is enhanced due to the increase in the transmission rate, electrical conductivity, electron mobility and surface state owing to the multi-cation hybrid. In addition, because SnO2@Na:Cs ETL can significantly improve interface contact with the perovskite film and improve its crystallinity, the transport defect state and carrier transport efficiency are significantly improved at the ETL/Perovskite interface. Therefore, the open circuit voltage (Voc) and fill factor (FF) of PSCs was significantly increased. The application of SnO2@Na:Cs ETL provides a simple and efficient method to obtain highly-efficient PSCs.

7.
ACS Appl Mater Interfaces ; 14(5): 6702-6713, 2022 Feb 09.
Article in English | MEDLINE | ID: mdl-35077142

ABSTRACT

The nonradiative recombination between hole transport layers (HTLs) and perovskites generally leads to obvious energy losses. The trap states at the HTL/perovskite interface directly influence the improvement of the power conversion efficiency (PCE) and stability. Interface regulation is a simple and commonly used method to decrease nonradiative recombination in inverted perovskite solar cells (PSCs). Here, a wide-bandgap halide was used to regulate the PTAA/MAPbI3 interface, in which n-hexyltrimethylammonium bromide (HTAB) was used to modify the upper surface of poly[bis(4-phenyl)-(2,4,6-trimethylphenyl)amine] (PTAA). Upon introduction of the HTAB layer, the contact between PTAA and MAPbI3 is strengthened, the defect state density in PSCs is reduced, the MAPbI3 crystallinity is improved, and the nonradiative recombination loss is suppressed. The device with HTAB delivers the highest PCE of 21.01% with negligible hysteresis, which is significantly higher than that of the control device (17.71%), and it maintains approximately 87% of its initial PCE for 1000 h without encapsulation in air with a relative humidity of 25 ± 5%. This work reveals an effective way of using a wide-bandgap halide to regulate the PTAA/MAPbI3 interface to simultaneously promote the PCE and stability of PSCs.

8.
J Colloid Interface Sci ; 609: 547-556, 2022 Mar.
Article in English | MEDLINE | ID: mdl-34815082

ABSTRACT

Perovskite solar cells (PSCs) have become a promising photovoltaic (PV) technology. Meanwhile, developing an electron transport layer (ETL) has been an effective way to promote the power conversion efficiency (PCE) of PSCs. Here, a 4-morpholine ethane sulfonic acid sodium salt (MES Na+) doped SnO2 ETL is utilized in planar heterojunction PSCs. The results show that the MES Na+ doped ETL can improve the crystallinity, and absorbance of perovskite films, and passivate interface defects between the perovskite film and SnO2 ETL. The doping effect accounts for the enhancement of conductivity and the decreasing work function of SnO2. When 10 mg mL-1 MES Na+ was added to the SnO2 precursor solution, the device showed the best performance Jsc, Voc, and FF of the PSCs values, which were 23.88 mA cm-2, 1.12 V and 78.69%, respectively, and the PCE was increased from 17.43% to 21.05%. This doping ETL strategy provides an avenue for defect passivation to further increase the efficiency of perovskite solar cells.

9.
J Colloid Interface Sci ; 583: 178-187, 2021 Feb 01.
Article in English | MEDLINE | ID: mdl-33002690

ABSTRACT

A highly efficient inverted polymer solar cell (PSC) has been successfully demonstrated by utilizing a wide bandgap magnesium oxide (MgO) film and ZnO stacked structure as an effective cathode interfacial layer. The MgO/ZnO bilayer structure is designed to combine the superiorities of both ZnO ETL and MgO film, based on the efficiency comparison of the PSCs without and with MgO interlayer. The ZnO film can serve as an efficient electron transport layer (ETL), while the MgO layer can reduce the surface defects of FTO and block the holes effectively, leading to an elevated electron collection and suppressed carrier recombination at the interface. With the excellent dual functions interface characteristics induced by the MgO/ZnO stacked films, the corresponding inverted PSC device based on the PTB7-Th:PC71BM photoactive layer system presents a superior power conversion efficiency (PCE) of 11.02%, which is higher than that of the PSC without MgO (8.79%). We believe that the MgO/ZnO bilayer structure is a superior interfacial contender for the organic photovoltaics and other photoelectric devices requiring cathode interfacial layers.

10.
J Colloid Interface Sci ; 562: 142-148, 2020 Mar 07.
Article in English | MEDLINE | ID: mdl-31838350

ABSTRACT

To enhance the performance of inverted structure polymer solar cells (PSCs), interfacial engineering considered as an effective and straightforward method was employed. In this study, to overcome the surface traps and energy level mismatches of the electron transport layer, a means of interface passivation by evaporating an ultrathin CaF2 layer above ZnO thin film as the electron transport layer was successfully adopted. We display that CaF2 layer could passivate the surface traps of ZnO thin film and decrease the interfacial barrier between PC61BM and ZnO, so that electron transfer efficiency is facilitated, the recombination of electrons and holes is inhibited at the contact interface, and the series resistance is reduced. After the introduction of the CaF2 layer, the short-circuit current and the fill factor was greatly improved, also the power conversion efficiency (PCE) was increased from 3.21% of the reference device without the CaF2 layer to 4.22% in the inverted PSCs based on P3HT:PC61BM bulk heterojunction photoactive layer. These results could have special guiding significance for high-efficiency PSCs and also great potential for applications of photovoltaic devices in the future.

11.
J Colloid Interface Sci ; 535: 308-317, 2019 Feb 01.
Article in English | MEDLINE | ID: mdl-30316117

ABSTRACT

Polymer solar cells (PSCs) are considered promising energy power suppliers due to their light weight, printability, low-energy fabrication and roll-to-roll processability. Recently, the solution-processed NiOx nanoparticles have been a desirable interfacial material for hole transport in the PSCs, instead of organic semiconductors. However, pure NiOx films restrain the high performance of PSCs due to their poor electrical characteristics caused by the localized orbital distribution at the top of valence band. Therefore, metal ion doping has been explored as a method to endow NiOx nanoparticles with the appropriate electrical characteristics. Herein, we applied solution-processed Cu-doped NiOx (Cu:NiOx) nanoparticles as an efficient hole transport layer (HTL) in PSCs. The Cu-doped NiOx enhanced the electrical conductivity of the material and improved the interface contact with the active layer, which remarkably facilitated the hole extraction and effectively suppressed the carrier recombination at the interface. Thus, a higher power conversion efficiency of 7.05%, corresponding to an approximately 30% efficiency improvement compared with that of a pristine NiOx interlayer (5.44%) in poly[N- 9''-hepta-decanyl-2,7-carbazolealt-5,5-(4',7'-di-2-thienyl-2',1',3'-ben-zothiadiazole)]:[6,6]-phenyl-C71-butyric acid methyl ester (PCDTBT:PC71BM)-based PSCs, was achieved by the proposed device. The developed solution-processed Cu:NiOx nanoparticles may be an excellent alternative for interfacial materials in PSCs or other optoelectronic devices requiring HTLs.

12.
ACS Appl Mater Interfaces ; 11(2): 2149-2158, 2019 Jan 16.
Article in English | MEDLINE | ID: mdl-30582327

ABSTRACT

Enhanced power conversion efficiency is reported in inverted polymer solar cells when an ultrathin layer of strontium fluoride (SrF2) is evaporated on the surface of the solution-processed zinc oxide (ZnO) electron transport layer. The photoactive layer is made up of bulk heterojunction composites of poly[4,8-bis(5(2-ethylhexyl)thiophen-2-yl)benzo[1,2- b:4,5- b']dithiopheneco-3-fluorothieno[3,4- b]-thiophene-2-carboxylate] and [6,6]-phenyl-C71-butyric acid methyl ester. The ZnO film acts as an effective electron transport layer, whereas the ultrathin SrF2 layer improves the energy level alignment and enhances the built-in potential via the formation of an interfacial dipole layer at the interfaces between the ZnO film and the photoactive layer, resulting in an enhanced electron extraction efficiency and a decreased carrier recombination loss. Furthermore, the SrF2 layer reduces the inherent incompatibility between the hydrophilic ZnO film and the hydrophobic photoactive layer. As a result, all the photovoltaic performance parameters are remarkably improved, leading to a high efficiency of up to 10.46% (with a fill factor of 71.38%), corresponding to a ca. 21% improvement over the reference device performance (8.64%). The use of a ZnO/SrF2 stacked interlayer provides a simple, but effective, approach to obtain high-efficiency inverted PSCs.

13.
Opt Express ; 26(4): 4300-4308, 2018 Feb 19.
Article in English | MEDLINE | ID: mdl-29475281

ABSTRACT

We introduce a structurally reconfigurable metasurface which is made of shape memory alloys (SMA). It could change the morphology of the unit cells repeatedly as we expect in response to a thermal stimulus and realize a tuning range from 13.3GHz to 17.2GHz for both polarizations simultaneously. Equivalent circuit models describe the operational principle and design methodology, the physical mechanism is interpreted with the variation of surface current distribution on the structure. The experimental results coincide with the numerical simulations, making the all-metal metasurface an attractive choice for manipulating the electromagnetic wave in a wide range of spectrums with the merits of higher controllability for dynamic behavior and greater freedom for design and manufacturing.


Subject(s)
Alloys/chemistry , Electromagnetic Fields , Electronics/instrumentation , Optics and Photonics/instrumentation , Equipment Design , Models, Theoretical , Thermal Conductivity
14.
ACS Appl Mater Interfaces ; 10(7): 6513-6520, 2018 Feb 21.
Article in English | MEDLINE | ID: mdl-29380594

ABSTRACT

Semitransparent polymer solar cells (ST-PSCs) show attractive potential in power-generating windows or building-integrated photovoltaics. However, the development of ST-PSCs is lagging behind opaque PSCs because of the contradiction between device efficiency and transmission. Herein, Ag/Au alloy nanoparticles and photonic crystals (PCs) were simultaneously introduced into ST-PSCs, acting compatibly as localized surface plasmon resonances and distributed Bragg reflectors to enhance light absorption and transmission. As a result, ST-PSCs based on a hybrid PTB7-Th:PC71BM active layer contribute an efficiency as high as 7.13 ± 0.15% and an average visible transmission beyond 20%, which are superior to most of the reported results. Furthermore, PCs can partly compensate valley range of transmission by balancing reflection and transmission regions, yielding a high color rendering index of 95. We believe that the idea of two light management methods compatibly enhancing the performance of ST-PSCs can offer a promising path to develop photovoltaic applications.

SELECTION OF CITATIONS
SEARCH DETAIL
...