Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Adv Mater ; 30(28): e1705385, 2018 Jul.
Article in English | MEDLINE | ID: mdl-29806141

ABSTRACT

Transforming thermal energy into electric energy and vice versa needs the decoupling of electrical transport from thermal transport. An innovative strategy is proposed by forming/disrupting electrically triggered conductive nanofilaments within semiconducting thin films to switch thermoelectric properties between two states without further material modification and manufacturing processes. It can also controllably adjust the degree of decoupling, providing a potential resolution and performance adjustability for heat/coldness control or power consumption reduction on demand.

2.
Adv Mater ; 28(17): 3383-90, 2016 05.
Article in English | MEDLINE | ID: mdl-26931100

ABSTRACT

High-quality perovskite monocrystalline films are successfully grown through cavitation-triggered asymmetric crystallization. These films enable a simple cell structure, ITO/CH3 NH3 PbBr3 /Au, with near 100% internal quantum efficiency, promising power conversion efficiencies (PCEs) >5%, and superior stability for prototype cells. Furthermore, the monocrystalline devices using a hole-transporter-free structure yield PCEs ≈6.5%, the highest among other similar-structured CH3 NH3 PbBr3 solar cells to date.

3.
Nanoscale ; 7(47): 19874-84, 2015 Dec 21.
Article in English | MEDLINE | ID: mdl-26580674

ABSTRACT

As devices shrink to the nanoscale, surface-to-volume ratio increases and the surface-environment interaction becomes a major factor for affecting device performance. The variation of electronic properties, including the surface band bending, gas chemisorption or photodesorption, native surface defects, and surface roughness, is called "surface effects". Such effects are ambiguous because they can be either negative or beneficial effects, depending on the environmental conditions and device application. This review provides an introduction to the surface effects on different types of nanodevices, offering the solutions to respond to their benefits and negative effects and provides an outlook on further applications regarding the surface effect. This review is beneficial for designing nano-enabled photodetectors, harsh electronics, memories, sensors and transistors via surface engineering.

4.
Sci Rep ; 5: 15087, 2015 Oct 12.
Article in English | MEDLINE | ID: mdl-26455819

ABSTRACT

A fully transparent resistive memory (TRRAM) based on Hafnium oxide (HfO2) with excellent transparency, resistive switching capability, and environmental stability is demonstrated. The retention time measured at 85 °C is over 3 × 10(4) sec, and no significant degradation is observed in 130 cycling test. Compared with ZnO TRRAM, HfO2 TRRAM shows reliable performance under harsh conditions, such as high oxygen partial pressure, high moisture (relative humidity = 90% at 85 °C), corrosive agent exposure, and proton irradiation. Moreover, HfO2 TRRAM fabricated in cross-bar array structures manifests the feasibility of future high density memory applications. These findings not only pave the way for future TRRAM design, but also demonstrate the promising applicability of HfO2 TRRAM for harsh environments.

5.
Sci Rep ; 4: 4402, 2014 Mar 18.
Article in English | MEDLINE | ID: mdl-24638086

ABSTRACT

The tolerance/resistance of the electronic devices to extremely harsh environments is of supreme interest. Surface effects and chemical corrosion adversely affect stability and operation uniformity of metal oxide resistive memories. To achieve the surrounding-independent behavior, the surface modification is introduced into the ZnO memristors via incorporating fluorine to replace the oxygen sites. F-Zn bonds is formed to prevent oxygen chemisorption and ZnO dissolution upon corrosive atmospheric exposure, which effectively improves switching characteristics against harmful surroundings. In addition, the fluorine doping stabilizes the cycling endurance and narrows the distribution of switching parameters. The outcomes provide valuable insights for future nonvolatile memory developments in harsh electronics.

6.
Nanoscale Res Lett ; 8(1): 483, 2013 Nov 16.
Article in English | MEDLINE | ID: mdl-24237683

ABSTRACT

We report a stability scheme of resistive switching devices based on ZnO films deposited by radio frequency (RF) sputtering process at different oxygen pressure ratios. I-V measurements and statistical results indicate that the operating stability of ZnO resistive random access memory (ReRAM) devices is highly dependent on oxygen conditions. Data indicates that the ZnO film ReRAM device fabricated at 10% O2 pressure ratio exhibits the best performance. Transmission electron microscopy (TEM) and X-ray diffraction (XRD) of ZnO at different O2 pressure ratios were investigated to reflect influence of structure to the stable switching behaviors. In addition, PL and XPS results were measured to investigate the different charge states triggered in ZnO by oxygen vacancies, which affect the stability of the switching behavior.

7.
ACS Nano ; 7(5): 3905-11, 2013 May 28.
Article in English | MEDLINE | ID: mdl-23590667

ABSTRACT

Few-layered MoS2 as Schottky metal-semiconductor-metal photodetectors (MSM PDs) for use in harsh environments makes its debut as two-dimensional (2D) optoelectronics with high broadband gain (up to 13.3), high detectivity (up to ~10(10) cm Hz(1/2)/W), fast photoresponse (rise time of ~70 µs and fall time of ~110 µs), and high thermal stability (at a working temperature of up to 200 °C). Ultrahigh responsivity (0.57 A/W) of few-layer MoS2 at 532 nm is due to the high optical absorption (~10% despite being less than 2 nm in thickness) and a high photogain, which sets up a new record that was not achievable in 2D nanomaterials previously. This study opens avenues to develop 2D nanomaterial-based optoelectronics for harsh environments in imaging techniques and light-wave communications as well as in future memory storage and optoelectronic circuits.

8.
Anal Chem ; 85(8): 3955-60, 2013 Apr 16.
Article in English | MEDLINE | ID: mdl-23461652

ABSTRACT

Resistive random-access memory (ReRAM) has been of wide interest for its potential to replace flash memory in the next-generation nonvolatile memory roadmap. In this study, we have fabricated the Au/ZnO-nanowire/Au nanomemory device by electron beam lithography and, subsequently, utilized in situ transmission electron microscopy (TEM) to observe the atomic structure evolution from the initial state to the low-resistance state (LRS) in the ZnO nanowire. The element mapping of LRS showing that the nanowire was zinc dominant indicating that the oxygen vacancies were introduced after resistance switching. The results provided direct evidence, suggesting that the resistance change resulted from oxygen migration.

9.
Nanoscale ; 4(23): 7346-9, 2012 Dec 07.
Article in English | MEDLINE | ID: mdl-23086234

ABSTRACT

We experimentally and theoretically demonstrated the hierarchical structure of SiO(2) nanorod arrays/p-GaN microdomes as a light harvesting scheme for InGaN-based multiple quantum well solar cells. The combination of nano- and micro-structures leads to increased internal multiple reflection and provides an intermediate refractive index between air and GaN. Cells with the hierarchical structure exhibit improved short-circuit current densities and fill factors, rendering a 1.47 fold efficiency enhancement as compared to planar cells.


Subject(s)
Gallium/chemistry , Indium/chemistry , Nanotubes/chemistry , Nitrogen Compounds/chemistry , Silicon Dioxide/chemistry , Solar Energy , Surface Properties
10.
ACS Nano ; 6(8): 6687-92, 2012 Aug 28.
Article in English | MEDLINE | ID: mdl-22895153

ABSTRACT

We demonstrate a novel, feasible strategy for practical application of one-dimensional photodetectors by integrating a carbon nanotube and TiO(2) in a core-shell fashion for breaking the compromise between the photogain and the response/recovery speed. Radial Schottky barriers between carbon nanotube cores and TiO(2) shells and surface states at TiO(2) shell surface regulate electron transport and also facilitate the separation of photogenerated electrons and holes, leading to ultrahigh photogain (G = 1.4 × 10(4)) and the ultrashort response/recovery times (4.3/10.2 ms). Additionally, radial Schottky junction and defect band absorption broaden the detection range (UV-visible). The concept using metallic core oxide-shell geometry with radial Schottky barriers holds potential to pave a new way to realize nanostructured photodetectors for practical use.


Subject(s)
Microelectrodes , Nanotubes, Carbon/chemistry , Photometry/instrumentation , Semiconductors , Titanium/chemistry , Equipment Design , Equipment Failure Analysis , Light , Materials Testing , Nanotubes, Carbon/radiation effects , Nanotubes, Carbon/ultrastructure , Particle Size , Titanium/radiation effects
SELECTION OF CITATIONS
SEARCH DETAIL
...