Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
Add more filters










Publication year range
1.
ACS Appl Mater Interfaces ; 13(36): 43075-43084, 2021 Sep 15.
Article in English | MEDLINE | ID: mdl-34463100

ABSTRACT

High-resolution patterning of quantum dot (QD) films is one of the preconditions for the practical use of QD-based emissive display platforms. Recently, inkjet printing and transfer printing have been actively developed; however, high-resolution patterning is still limited owing to nozzle-clogging issues and coffee ring effects during the inkjet printing and kinetic parameters such as pickup and peeling speed during the transfer process. Consequently, employing direct optical lithography would be highly beneficial owing to its well-established process in the semiconductor industry; however, exposing the photoresist (PR) on top of the QD film deteriorates the QD film underneath. This is because a majority of the solvents for PR easily dissolve the pre-existing QD films. In this study, we present a conventional optical lithography process to obtain solvent resistance by reacting the QD film surface with diethylzinc (DEZ) precursors using atomic layer deposition. It was confirmed that, by reacting the QD surface with DEZ and coating PR directly on top of the QD film, a typical photolithography process can be performed to generate a red/green/blue pixel of 3000 ppi or more. QD electroluminescence devices were fabricated with all primary colors of QDs; moreover, compared to reference QD-LED devices, the patterned QD-LED devices exhibited enhanced brightness and efficiency.

2.
Nanomaterials (Basel) ; 11(2)2021 Feb 09.
Article in English | MEDLINE | ID: mdl-33572253

ABSTRACT

Square-shaped or rectangular nanoparticles (NPs) of lanthanum oxide (LaOx) were synthesized and layered by convective self-assembly to demonstrate an analog memristive device in this study. Along with non-volatile analog memory effect, selection diode property could be co-existent without any implementation of heterogeneous multiple stacks with ~1 µm thick LaOx NPs layer. Current-voltage (I-V) behavior of the LaOx NPs resistive switching (RS) device has shown an evolved current level with memristive behavior and additional rectification functionality with threshold voltage. The concurrent memristor and diode type selector characteristics were examined with electrical stimuli or spikes for the duration of 10-50 ms pulse biases. The pulsed spike increased current levels at a read voltage of +0.2 V sequentially along with ±7 V biases, which have emulated neuromorphic operation of long-term potentiation (LTP). This study can open a new application of rare-earth LaOx NPs as a component of neuromorphic synaptic device.

3.
Nanoscale ; 12(26): 14120-14134, 2020 Jul 09.
Article in English | MEDLINE | ID: mdl-32597451

ABSTRACT

The development of bioinspired electronic devices that can mimic the biological synapses is an essential step towards the development of efficient neuromorphic systems to simulate the functions of the human brain. Among various materials that can be utilized to attain electronic synapses, the existing semiconductor industry-compatible conventional materials are more favorable due to their low cost, easy fabrication and reliable switching properties. In this work, atomic layer deposited HfO2-based memristor synaptic arrays are fabricated. The coexistence of threshold switching (TS) and memory switching (MS) behaviors is obtained by modulating the device current. The TS characteristics are exploited to emulate essential synaptic functions. The Ag diffusive dynamics of our electronic synapses, analogous to the Ca2+ dynamics in biological synapses, is utilized to emulate synaptic functions. Electronic synapses successfully emulate paired-pulse facilitation (PPF), post-tetanic potentiation (PTP), spike-timing-dependent plasticity (STDP), short-term potentiation (STP), long-term potentiation (LTP) and transition from STP to LTP with rehearsals. The psychological memorization model of short-term memory (STM) to long-term memory (LTM) transition is mimicked by image memorization in crossbar array devices. Reliable and repeatable bipolar MS behaviors with a low operating voltage are obtained by a higher compliance current for energy-efficient nonvolatile memory applications.


Subject(s)
Neuronal Plasticity , Synapses , Electronics , Humans , Long-Term Potentiation , Memory
4.
Nanotechnology ; 31(26): 265201, 2020 Apr 09.
Article in English | MEDLINE | ID: mdl-32168505

ABSTRACT

The effect of nitrogen-doping (N-doping) in an indium-gallium-zinc oxide (IGZO) channel layer on the analog, linear, and reversible drain current modulation in thin-film transistors (TFTs) with Al-top-gate/SiOx/TaOx/IGZO stack is investigated for potential application to artificial synaptic devices. The N-doped devices exhibit a more linear increase of drain current upon repeating positive gate biasing, corresponding to synaptic potentiation, while the undoped device shows a highly non-linear and abrupt increase of drain current. Distinct from the increase of drain current at positive biasing for potentiation, the decrease of drain current for depression behavior at negative biasing is found to be the same. Whereas the increase of drain current becomes more linear, the channel conductance, the magnitude of its change, and its changing speed are decreased by the N-doping. The partial replacement of oxygen with nitrogen, having higher binding energy with metal-cations, suppresses oxygen vacancy formation, then decreases the channel conductance. It also retards the migration of oxygen ions, then leads to a linear increase of drain current. These results reveal that the characteristics of tunable drain current such as its linearity, dynamic range, and speed could be controlled by altering the internal state of the IGZO channel, which is crucial for application to an artificial synapse in a neuromorphic system.

5.
ACS Appl Mater Interfaces ; 11(40): 36807-36816, 2019 Oct 09.
Article in English | MEDLINE | ID: mdl-31514504

ABSTRACT

A threshold resistive switching (RS) device concurrently demonstrating analog memristive property with mesoporous silica-titania (m-ST) nanocomposites is introduced in this study. The nanostructured m-ST layer in an Al/m-ST/Pt device was constructed by facile soft templating of evaporation-induced self-assembly (EISA) method to demonstrate nonlinear threshold RS behaviors accompanying with discrete synaptic characteristics along with adaptive motions. The EISA layer was composed of well-ordered mesopores (∼10 nm), where paths of electrical currents could be controllably guided and sequentially activated by repeated voltage sweeps. The combinational memristive behavior accompanying the shift of threshold voltage (Vth) could implicate concurrent performances of threshold RS and selection diode devices. In addition, synaptic functionalities of long-term potentiation and depression were characterized by variations of pulse timing width (7-100 ms). Physical and chemical features of the m-ST were analyzed with Fourier-transform infrared spectroscopy, X-ray photoelectron spectroscopy, field emission scanning electron microscopy, high-resolution transmission electron microscopy, and optical microscopy to investigate the unique origin of dual operation modes of the device. The m-ST synaptic device could have potential for further development of a hybrid selection diode having both a low sneaky current loss and memristive characteristics accomplishing low level of cross-talk between RS devices.

6.
Nanotechnology ; 30(2): 025203, 2019 Jan 11.
Article in English | MEDLINE | ID: mdl-30387440

ABSTRACT

We demonstrate single- and double-gate synaptic operations of a thin-film transistor (TFT) with double-gate stack consisting of an Al-top-gate/SiO x /TaO x /n-IGZO on a SiO2/n+-Si-bottom-gate substrate. This synaptic TFT exhibits a tunable drain current, mimicking synaptic weight modulation in the biological synapse, upon repeatedly applying gate and drain voltages. The drain current modulation features are analog, voltage-polarity dependently reversible, and strong with a dynamic range of multiple orders of magnitude (∼104). These features occur as a consequence of the changes in mobility of the IGZO channel, gate insulator capacitance, and threshold voltage. The drain current modulation responsive to the timing of the voltage application emulates synaptic potentiation, depression, paired-pulse facilitation, and memory transition behaviors depending on the voltage pulse amplitude, width, repetition number, and interval between pulses. The synaptic motions can be realized also by a double-gate operation that separately tunes the channel conductance by top-gate biasing and senses it by bottom-gate biasing. It provides the modulated synaptic weight with a wide level of synaptic weight through the read condition using a bottom-gate stack without read-disturbance. These results verify the potential application of TaO x /IGZO TFT with single- and double-gate operations to artificial synaptic devices.

7.
Nanotechnology ; 29(29): 295201, 2018 Jul 20.
Article in English | MEDLINE | ID: mdl-29714170

ABSTRACT

We report a variety of synaptic behaviors in a thin-film transistor (TFT) with a metal-oxide-semiconductor gate stack that has a Pt/HfO x /n-type indium-gallium-zinc oxide (n-IGZO) structure. The three-terminal synaptic TFT exhibits a tunable synaptic weight with a drain current modulation upon repeated application of gate and drain voltages. The synaptic weight modulation is analog, voltage-polarity dependent reversible, and strong with a dynamic range of multiple orders of magnitude (>104). This modulation process emulates biological synaptic potentiation, depression, excitatory-postsynaptic current, paired-pulse facilitation, and short-term to long-term memory transition behaviors as a result of repeated pulsing with respect to the pulse amplitude, width, repetition number, and the interval between pulses. These synaptic behaviors are interpreted based on the changes in the capacitance of the Pt/HfO x /n-IGZO gate stack, the channel mobility, and the threshold voltage that result from the redistribution of oxygen ions by the applied gate voltage. These results demonstrate the potential of this structure for three-terminal synaptic transistor using the gate stack composed of the HfO x gate insulator and the IGZO channel layer.

8.
Nanotechnology ; 29(26): 265204, 2018 Jun 29.
Article in English | MEDLINE | ID: mdl-29633723

ABSTRACT

A crossbar array of Pt/CeO2/Pt memristors exhibited the synaptic characteristics such as analog, reversible, and strong resistance change with a ratio of ∼103, corresponding to wide dynamic range of synaptic weight modulation as potentiation and depression with respect to the voltage polarity. In addition, it presented timing-dependent responses such as paired-pulse facilitation and the short-term to long-term memory transition by increasing amplitude, width, and repetition number of voltage pulse and reducing the interval time between pulses. The memory loss with a time was fitted with a stretched exponential relaxation model, revealing the relation of memory stability with the input stimuli strength. The resistance change was further enhanced but its stability got worse as increasing measurement temperature, indicating that the resistance was changed as a result of voltage- and temperature-dependent electrical charging and discharging to alter the energy barrier for charge transport. These detailed synaptic characteristics demonstrated the potential of crossbar array of Pt/CeO2/Pt memristors as artificial synapses in highly connected neuron-synapse network.

9.
Nanotechnology ; 29(3): 035202, 2018 01 19.
Article in English | MEDLINE | ID: mdl-29251266

ABSTRACT

The resistive random access memory (RRAM) devices with heterostuctures have been investigated due to cycling stability, nonlinear switching, complementary resistive switching and self-compliance. The heterostructured devices can modulate the resistive switching (RS) behavior appropriately by bilayer structure with a variety of materials. In this study, the bipolar resistive switching characteristics of the bilayer structures composed of Ta2O5 and Ag2Se, which are transition-metal oxide (TMO) and silver chalcogenide, were investigated. The bilayer devices of Ta2O5 deposited on Ag2Se (Ta2O5/Ag2Se) and Ag2Se deposited on Ta2O5 (Ag2Se/Ta2O5) were fabricated for investigation of the RS characteristics by stacking sequence of Ta2O5 and Ag2Se. All operating voltages were applied to the Ag top electrode with the Pt bottom electrode grounded. The Ta2O5/Ag2Se device showed that a negative voltage sweep switched the device from high resistance state (HRS) to low resistance state (LRS) and a positive voltage sweep switched the device from LRS to HRS. On the contrary, for the Ag2Se/Ta2O5 device a positive voltage sweep switched the device from HRS to LRS, and a negative voltage sweep switched it from LRS to HRS. The polarity dependence of RS was attributed to the stacking sequence of Ta2O5 and Ag2Se. In addition, the combined heterostructured device of both bilayer stacks, Ta2O5/Ag2Se and Ag2Se/Ta2O5, exhibited the complementary switching characteristics. By using threshold switching devices, sneak path leakage can be reduced without additional selectors. The bilayer heterostructures of Ta2O5 and Ag2Se have various advantages such as self-compliance, reproducibility and forming-free stable RS. It confirms the possible applications of TMO and silver chalcogenide heterostructures in RRAM.

10.
Adv Mater ; 27(40): 6170-5, 2015 Oct 28.
Article in English | MEDLINE | ID: mdl-26331363

ABSTRACT

The CH3 NH3 PbI3- x Clx organic-inorganic hybrid perovskite material demonstrates remarkable resistive switching behavior, which can be applicable in resistive random access memory devices. The simply designed Au/CH3 NH3 PbI3- x Clx /FTO structure is fabricated by a low-temperature, solution-processable method, which exhibits remarkable bipolar resistive switching and nonvolatile properties.

11.
J Nanosci Nanotechnol ; 15(10): 7564-8, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26726372

ABSTRACT

To investigate the nature of the switching phenomenon at the metal-tantalum oxide interface, we fabricated a memory device in which a tantalum oxide amorphous layer acted as a switching medium. Different metals were deposited on top of the tantalum oxide layer to ensure that they will react with some of the oxygen contents already present in the amorphous layer of the tantalum oxide. This will cause the formation of metal oxide (MOx) at the interface. Two devices with Ti and Cu as the top electrodes were fabricated for this purpose. Both devices showed bipolar switching characteristics. The SET and RESET voltages for the Ti top electrode device were ~+1.7 V and ~-2 V, respectively, whereas the SET and RESET voltages for the Cu top electrode device were ~+0.9 V and ~-0.9 V, respectively. In the high-resistance state (HRS) conduction, the mechanisms involved in the devices with Ti and Cu top electrodes were space-charge limited conduction (SCLC) and ohmic, respectively. On the other hand, in the low-resistance state (LRS), the Ti top electrode device undergoes SCLC at a high voltage and ohmic conduction at a low voltage, and the Cu top electrode again undergoes ohmic conduction. From the consecutive sweep cycles, it was observed that the SET voltage gradually decreased with the sweeps for the Cu top electrode device, whereas for the Ti top electrode device, the set voltage did not vary with the sweeps.

12.
J Nanosci Nanotechnol ; 15(11): 8613-6, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26726561

ABSTRACT

The fabrication of hybrid structure with TiO2 nanoparticle assembly and Ta2O5 thin film layer was demonstrated. The close-packed nanoparticles could influence the resistive switching behaviors due to the huge numbers of interface states and vacancies in the nanoparticle assembly. The device with hybrid structure presented the typical bipolar resistive switching characteristics in the structure of Ti/TiO2/Ta2O5/Au on SiO2/Si substrate. The set voltage was observed at -0.7 V, and the reset voltage occurred at (-)-0.7 V, which was smaller than that of Ta2O5 layer only. The electrical conduction mechanisms were the ohmic conduction at low resistance state (LRS) and the space charge limited conduction at high resistance state (HRS), respectively. The devices showed stable current ratio of LRS to HRS. The temperature dependent properties of the devices were also investigated. The device with nanoparticle assembly showed better electrical characteristics with low HRS current level and stable LRS current level with respect to the temperature.

13.
J Nanosci Nanotechnol ; 15(11): 9030-3, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26726637

ABSTRACT

Carbon nanotubes (CNTs) have been investigated as field-emission sources owing to their high electrical conductivity and high aspect ratio. However, practical applications demand that the emission lifetime of CNTs be further improved. Since ZnO demonstrates impressive electrical and thermal conductivity, when coated on the surface of CNTs, it can allow the CNT field emitters to endure high electrical stress and high temperature. Moreover, ZnO nanostructures protect the CNT emitters from being bombarded by high-energy ions, which are accelerated by the high electric field. From the result of emission lifetime measurements at the emission current density of 100 mA/cm2, we found that the emission lifetime was increased by more than a factor of 2 when ZnO had been coated onto the CNT emitters. The observation registers as an important contribution to the practical application of CNT emitters with long-term emission stability, as well as with high emission currents. In this work, we elucidate the detailed mechanism of long-term stability that can be achieved by coating ZnO nanostructures on the surface of CNTs.

14.
J Nanosci Nanotechnol ; 14(11): 8182-6, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25958496

ABSTRACT

The fabrication of 3 x 3 crossbar arrays measuring 20 µm in width was demonstrated. The bipolar resistive switching characteristics in manganese oxide nanoparticles were investigated in the crossbar structure of top electrode (Au)/nanoparticle assembly/bottom electrode (Ti) on SiO2/Si substrate. The monodisperse manganese oxide nanoparticles measuring 13 nm in diameter were chemically synthesized by thermal decomposition of manganese acetate in the presence of oleic acid at high temperature. The nanoparticles were assembled as a layer measuring 30 nm thick by repeated dip-coating and annealing steps. The Au/nanoparticle assembly/Ti devices performed the bipolar behavior associated with the formation and sequential rupture of multiple conducting filaments in applying bias on Au electrode. When the voltage was swept from to +5 V to the Au top electrode, the reset voltage was observed at - 4.4 V. As the applied voltage swept from 0 to -5 V, the set voltage occurred at (-) -1.8 V.

15.
J Nanosci Nanotechnol ; 14(12): 9459-64, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25971083

ABSTRACT

Binary transition metal oxides such as ZnO, TiO2, and MnO; and their various structures such as thin film, nanowire, and nanoparticle assembly; have been widely investigated for use in insulators in resistive random access memory (ReRAM), considered a next-generation nonvolatile memory device. Among the various driving mechanisms of resistive switching in insulating materials, the conductive filament model is one of the most widely accepted. Studies on spatially confined structures such as one-dimensional nanostructures and zero-dimensional nanoparticles to reveal the detailed filament constructing mechanism are warranted because low-dimensional nanostructures can provide more localized properties with a narrow dispersion of operational parameter values compared with thin-film structures. We investigated the resistive switching characteristics of ZnO nanowire (NW) structures. The NWs were grown on an Au/Ti/SiO2/Si substrate via the hydrothermal method. The empty space between the top and bottom electrodes was filled with a photoresist to prevent direct connection between the electrodes. The top electrode (Cr) and bottom electrode (Au), both with a thickness of -100 nm, were deposited by DC sputtering. The current-voltage (I-V) measurements were performed using a semiconductor characterization system. Additionally, the local current image and the point I-V characteristics for each NW were examined by replacing the top electrode with a conducting atomic force microscope tip. The Au-ZnO NW-Cr devices exhibited bipolar resistive switching behavior.

16.
J Nanosci Nanotechnol ; 13(12): 8074-8, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24266194

ABSTRACT

Periodically distributed ZnO nanostructure arrays were hydrothermally grown on silicon substrates. For the preferential, site-selective growth of the ZnO nanostructures, a seed layer was patterned using self-assembled monolayers of polystyrene spheres (PSs) lithography technique. The size of the seed layer was controlled by the size of PSs, which was determined by oxygen plasma etching time. Due to the existence of numerous nucleation sites, flower-like (FL) ZnO nanostructures grew on the large seed layer over 800 nm in diameter. By reducing the size of the seed layer, we could make a couple of ZnO nanowires grow on a single seed layer island. We examined the cathodoluminescence (CL) spectra of FL ZnO nanostructure arrays and coupled (CO) ZnO nanowire arrays. Since the dimension of the nanostructures is smaller than or comparable to the penetration depth of the incident electron, CL signal would be generated in the whole body of the nanostructures. So, the CL intensity might be proportional to the surface area through which the photons could escape. As a result, it is natural that the CL intensity from the FL ZnO nanostructure arrays should be stronger than that from the CO ZnO nanowire arrays. However, in spite of the smaller surface area, the CL intensity was strikingly enhanced in the CO ZnO nanowire arrays compared with the closely-packed ZnO nanowire arrays. It could be attributed to the suppression of the near-band-edge ultraviolet emission in the [0001] direction, which was observed in the monochromatic CL measurement.

17.
Nanoscale ; 5(2): 772-9, 2013 Jan 21.
Article in English | MEDLINE | ID: mdl-23235888

ABSTRACT

Tunable threshold resistive switching characteristics of Pt-Fe(2)O(3) core-shell nanoparticle (NP) assembly were investigated. The colloidal Pt-Fe(2)O(3) core-shell NPs with a Pt core diameter of ∼3 nm and a total diameter of ∼15 nm were chemically synthesized by a one-step process. These NPs were assembled as a layer with a thickness of ∼80 nm by repeated dip-coating between Ti and Pt electrodes on a flexible polyethersulfone (PES) substrate. The Ti/NPs/Pt/PES structure exhibited the threshold switching, i.e. volatile transition from high to low resistance state at a high voltage and vice versa at a low voltage. The current-voltage measurements after charging and discharging NPs revealed that the resistance state and threshold switching voltage of the assembly could be tuned by the space charges stored in high density trap sites of Pt cores in Pt-Fe(2)O(3) core-shell NP assembly. These results demonstrated the possible tuning of threshold switching of core-shell NP assembly by the space charge effect, which can be potentially utilized for the tunable selection device element in nonvolatile memory circuits.

18.
J Nanosci Nanotechnol ; 12(12): 8904-7, 2012 Dec.
Article in English | MEDLINE | ID: mdl-23447936

ABSTRACT

Boron-doped microcrystalline diamond (BMD) and nanocrystalline diamond (BND) thin films were grown on Si substrates by microwave-assisted chemical vapor deposition, and their field emission properties were evaluated. BND exhibited a lower turn-on field and higher field enhancement factor than BMD. Furthermore, in a long-term emission stability test, BND showed only a 4% increase in the current density after 12 h of emission, whereas the current density of BMD decreased by - 59%. These results indicate that BND is a more stable and viable current emitter than BMD.

20.
Sensors (Basel) ; 10(1): 765-74, 2010.
Article in English | MEDLINE | ID: mdl-22315567

ABSTRACT

Toluene gas was successfully measured at room temperature using a device microfabricated by a nanoimprinting method. A highly uniform nanoporous thin film was produced with a dense array of titania (TiO(2)) pores with a diameter of 70 ≈ 80 nm using this method. This thin film had a Pd/TiO(2) nanoporous/SiO(2)/Si MIS layered structure with Pd-TiO(2) as the catalytic sensing layer. The nanoimprinting method was useful in expanding the TiO(2) surface area by about 30%, as confirmed using AFM and SEM imaging. The measured toluene concentrations ranged from 50 ppm to 200 ppm. The toluene was easily detected by changing the Pd/TiO(2) interface work function, resulting in a change in the I-V characteristics.


Subject(s)
Gases/analysis , Molecular Imprinting/methods , Nanostructures/chemistry , Toluene/analysis , Transducers , Equipment Design , Equipment Failure Analysis , Nanostructures/ultrastructure , Porosity
SELECTION OF CITATIONS
SEARCH DETAIL
...