Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Main subject
Language
Publication year range
1.
ChemSusChem ; 17(6): e202301314, 2024 Mar 22.
Article in English | MEDLINE | ID: mdl-38018882

ABSTRACT

Membrane-based gas separation technologies are one solution towards mitigating global emissions of CO2. New membrane materials with improved separation performance are still highly sought after. Composite membranes based on organic ionic plastic crystals (OIPCs) have shown preferential interaction for CO2 over N2, leading in some cases to competitive CO2/N2 selectivities. However, these ionic materials have been scarcely studied in the field of gas separation. Here, OIPCs based on the bis(trifluoromethylsulfonyl)imide ([TFSI]-) anion were investigated for use as gas separation membranes for the first time. The effect of the polymer type was also investigated, through the comparison of poly(vinylidene fluoride) (PVDF) and poly(vinylidene fluoride)-hexafluoropropylene (PVDF-HFP) OIPC membranes. A strong temperature dependence of the gas separation performance was found, particularly in the N-methyl-N-ethylpyrrolidinium-based composites where the material undergoes a solid-solid phase transition within the testing temperature range. The polymer type was noted to induce a strong effect on the structure of the composites, as well as affecting the gas and ionic transport. Thus, this research provides insights on the influence of the [TFSI]- anion on the structure and separation properties of OIPC-based composites, and new information towards the development of novel OIPC-based membranes with enhanced gas separation performance.

2.
Phys Chem Chem Phys ; 25(24): 16469-16482, 2023 Jun 21.
Article in English | MEDLINE | ID: mdl-37306459

ABSTRACT

Organic ionic plastic crystals (OIPCs) are emerging candidates as safer, quasi solid-state ion conductors for various applications, especially for next-generation batteries. However, a fundamental understanding of these OIPC materials is required, particularly concerning how the choice of cation and anion can affect the electrolyte properties. Here, we report the synthesis and characterisation of a range of new morpholinium-based OIPCs and demonstrate the benefit of the ether functional group in the cation ring. Specifically, we investigate the 4-ethyl-4-methylmorpholinium [C2mmor]+ and 4-isopropyl-4-methylmorpholinium [C(i3)mmor]+ cations paired with bis(fluorosulfonyl)imide [FSI]- and bis(trifluoromethanesulfonyl)imide [TFSI]- anions. A fundamental study of the thermal behaviour and transport properties was performed using differential scanning calorimetry (DSC), thermal gravimetric analysis (TGA) and electrochemical impedance spectroscopy (EIS). The free volume within the salts has been investigated by positron annihilation lifetime spectroscopy (PALS) and the ion dynamics using solid-state nuclear magnetic resonance (NMR) analysis. Finally, the electrochemical stability window was studied using cyclic voltammetry (CV). Out of the four morpholinium salts, [C2mmor][FSI] exhibits the widest phase I range from 11 to 129 °C, which is advantageous for their application. [C(i3)mmor][FSI] displayed the highest conductivity of 1 × 10-6 S cm-1 at 30 °C, whereas the largest vacancy volume of 132 Å3 was found for [C2mmor][TFSI]. These insights into the properties of new morpholinium-based OIPCs will be important for developing new electrolytes with optimised thermal and transport properties for a range of clean energy applications.

3.
Chemphyschem ; 23(13): e202200115, 2022 07 05.
Article in English | MEDLINE | ID: mdl-35451216

ABSTRACT

The implementation of next-generation batteries requires the development of safe, compatible electrolytes that are stable and do not cause safety problems. The difluoro(oxalato)borate ([DFOB]- ) anion has been used as an electrolyte additive to aid with stability, but such an approach has most commonly been carried out using flammable solvent electrolytes. As an alternative approach, utilisation of the [DFOB]- anion to make ionic liquids (ILs) or Organic Ionic Plastic Crystals (OIPCs) allows the advantageous properties of ILs or OIPCs, such as higher thermal stability and non-volatility, combined with the benefits of the [DFOB]- anion. Here, we report the synthesis of new [DFOB]- -based ILs paired with triethylmethylphosphonium [P1222 ]+ , and diethylisobutylmethylphosphonium [P122i4 ]+ . We also report the first OIPCs containing the [DFOB]- anion, formed by combination with the 1-ethyl-1-methylpyrrolidinium [C2 mpyr]+ cation, and the triethylmethylammonium [N1222 ]+ cation. The traditional synthetic route using halide starting materials has been successfully replaced by a halide-free tosylate-based synthetic route that is advantageous for a purer, halide free product. The synthesised [DFOB]- -based salts exhibit good thermal stability, while the ILs display relatively high ionic conductivity. Thus, the new [DFOB]- -based electrolytes show promise for further investigation as battery electrolytes both in liquid and solid-state form.


Subject(s)
Ionic Liquids , Anions/chemistry , Borates/chemistry , Cations , Electrolytes/chemistry , Ionic Liquids/chemistry , Plastics
4.
Science ; 372(6547): 1187-1191, 2021 06 11.
Article in English | MEDLINE | ID: mdl-34112690

ABSTRACT

Ammonia (NH3) is a globally important commodity for fertilizer production, but its synthesis by the Haber-Bosch process causes substantial emissions of carbon dioxide. Alternative, zero-carbon emission NH3 synthesis methods being explored include the promising electrochemical lithium-mediated nitrogen reduction reaction, which has nonetheless required sacrificial sources of protons. In this study, a phosphonium salt is introduced as a proton shuttle to help resolve this limitation. The salt also provides additional ionic conductivity, enabling high NH3 production rates of 53 ± 1 nanomoles per second per square centimeter at 69 ± 1% faradaic efficiency in 20-hour experiments under 0.5-bar hydrogen and 19.5-bar nitrogen. Continuous operation for more than 3 days is demonstrated.

SELECTION OF CITATIONS
SEARCH DETAIL
...