Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Faraday Discuss ; 2024 May 20.
Article in English | MEDLINE | ID: mdl-38766945

ABSTRACT

Mirrors for atoms and molecules are essential tools for matter-wave optics with neutral particles. Their realization has required either a clean and atomically smooth crystal surface, sophisticated tailored electromagnetic fields, nanofabrication, or particle cooling because of the inherently short de Broglie wavelengths and strong interactions of atoms with surfaces. Here, we demonstrate reflection of He atoms from inexpensive, readily available, and robust gratings designed for light waves. Using different types of blazed gratings with different periods, we study how microscopic and macroscopic grating properties affect the mirror performance. A holographic grating with 417 nm period shows reflectivity up to 47% for He atoms, demonstrating that commercial gratings can serve as mirrors for thermal energy atoms and molecules. We also observe reflection of He2 and He3 which implies that the grating might also function as a mirror for other breakable particles that, under typical conditions, do not scatter nondestructively from a solid surface such as, e.g., metastable atoms or antihydrogen atoms.

2.
J Chem Phys ; 154(5): 054308, 2021 Feb 07.
Article in English | MEDLINE | ID: mdl-33557548

ABSTRACT

The conformational structures of heterocyclic compounds are of considerable interest to chemists and biochemists as they are often the constituents of natural products. Among saturated four-membered heterocycles, the conformational structure of oxetane is known to be slightly puckered in equilibrium because of a low interconversion barrier in its ring-puckering potential, unlike cyclobutane and thietane. We measured the one-photon vacuum ultraviolet mass-analyzed threshold ionization (VUV-MATI) and two-photon IR+VUV-MATI spectra of oxetane for the first time to determine the ring-puckering potential of the oxetane cation and hence its conformational structure in the D0 (ground) state. Remarkably, negative anharmonicity and large amplitudes were observed for the ring-puckering vibrational mode progression in the low-frequency region of the observed MATI spectra. We were able to successfully analyze the progression in the MATI spectra through the Franck-Condon simulations, using modeled potential energy functions for the ring-puckering modes in the S0 and D0 states. Considering that the interconversion barrier and puckered angle for the ring-puckering potential on the S0 state were found to be 15.5 cm-1 and 14°, respectively, the cationic structure is expected to be planar with C2v symmetry. Our results revealed that the removal of an electron from the nonbonding orbitals on the oxygen atom in oxetane induced the straightening of the puckered ring in the cation owing to an increase in ring strain. Consequently, we conclude that this change in the conformational structure upon ionization generated the ring-puckering vibrational mode progression in the MATI spectra.

3.
Phys Chem Chem Phys ; 23(2): 1414-1423, 2021 Jan 21.
Article in English | MEDLINE | ID: mdl-33393952

ABSTRACT

Isolating and identifying the conformational forms of molecules are imperative processes to investigate the chemical reaction pathways of individual conformers. Herein, we explored the conformational structures of tetrahydropyran in the neutral (S0) and cationic (D0) states by varying the supersonic expansion conditions using one-photon vacuum ultraviolet mass-analyzed threshold ionization (VUV-MATI) spectroscopy. The constructed 2D potential energy surfaces associated with conformational interconversion between the chair and boat forms in the S0 and D0 states revealed that the ionic transitions observed in the MATI spectra correspond to the most stable chair conformer. Accordingly, based on the 0-0 band in the VUV-MATI spectrum supported by the VUV photoionization efficiency curve, the adiabatic ionization energy for the conversion of the chair conformer to a cationic state was determined to be 74 687 ± 4 cm-1 (9.2600 ± 0.0005 eV). Definitive vibrational assignment of the measured MATI spectra using Franck-Condon fitting revealed the cationic structure of the twisted chair conformer. The geometrical change upon ionization promoted the vibrational modes associated with ring inversion and deformation motions in the cationic state. This behavior, which was attributed to the effect of electron removal from the highest occupied molecular orbital (HOMO) consisting of the nonbonding orbital of the oxygen atom, reveals the role of electrons in the HOMO.

4.
Phys Chem Chem Phys ; 22(47): 27673-27680, 2020 Dec 16.
Article in English | MEDLINE | ID: mdl-33236742

ABSTRACT

Ring conformations of 3,4-dihydro-2H-pyran (34DHP) have attracted considerable interest owing to their structural similarity to cyclohexene, an important molecule in stereochemistry. In this study, we investigated the conformational interconversion of 34DHP in both the neutral (S0) and the cationic (D0) ground states. High-resolution vacuum ultraviolet mass-analyzed threshold ionization (VUV-MATI) spectroscopy was utilized to obtain information regarding the adiabatic ionic transition between the S0 and the D0 states. Based on the 0-0 band in the VUV-MATI spectrum supported by the VUV-photoionization efficiency curve, the adiabatic ionization energy of 34DHP was accurately determined to be 8.3355 ± 0.0005 eV (67 230 ± 4 cm-1). To identify the conformer corresponding to this measured value, two-dimensional potential energy surfaces (2D PESs) associated with conformational interconversion in the S0 and the D0 states were constructed at the B3LYP/aug-cc-pVTZ level. It was revealed that in the S0 state, the twisted conformers undergo interconversion through the asymmetric bent conformation on the pseudorotational pathway, whereas in the D0 state, the half-bent conformers directly undergo interconversion via the planar conformation at the saddle point of 2D PES. The change in the conformational interconversion pathway upon ionization is attributed to electron removal from the highest occupied molecular orbital, which consists of a π orbital in the 2C-3C double bond interacting with a nonbonding orbital in the oxygen atom of 34DHP. Then, vibrational assignment of the observed spectrum could be achieved through Franck-Condon fitting for ionic transitions between the neutral twisted and the cationic half-bent conformers. The strong promotion of the ring bending and the 1O-2C-3C asymmetric stretching modes in the adiabatic ionic transitions confirmed the determined cationic structure of 34DHP.

5.
Phys Chem Chem Phys ; 21(18): 9255-9264, 2019 May 08.
Article in English | MEDLINE | ID: mdl-31012885

ABSTRACT

Alkylpyrazines, which are well-known as aromatic substances and traditional medicines, are interesting molecular systems, and their methyl conformations result in unique structural and dynamical properties. We explored the conformational preference of the methyl group and the highest occupied molecular orbitals (HOMOs) of 2-methylpyrazine and its cation by utilizing high-resolution one-photon vacuum ultraviolet mass-analyzed threshold ionization (VUV-MATI) spectroscopy and natural bond orbital analysis to understand the relevant molecular activities. The measured VUV-MATI spectrum of 2-methylpyrazine revealed its adiabatic ionization energy and the vibrational frequencies of its cation. From the 0-0 band in the MATI spectrum under the zero-field limit, the accurate adiabatic ionization energy was determined as 9.0439 ± 0.0006 eV (72 944 ± 5 cm-1), which is lower than that of pyrazine. The peaks observed in the spectrum were unambiguously assigned based on vibrational frequencies and Franck-Condon factors from quantum chemical calculations for individual totally symmetric transitions between the S0 and D0 states using the simple one-photon dipole selection rules. The most convincing molecular structure of the 2-methylpyrazine cation was determined by Franck-Condon fit spectral simulations. Upon removal of an electron from the non-bonding orbital (HOMO) on the para nitrogen atoms, a significant structural change takes place along the vibrational motion associated with ring distortion by contraction of the N-N distance, resulting in prominent overtones and combination bands. In addition, the methyl substitution of pyrazine lowered the adiabatic ionization energy and the methyl group preferred the anti-configuration with respect to the pyrazine moiety in the D0 state, resulting in a frozen internal rotation regardless of ionization.

6.
Phys Chem Chem Phys ; 19(45): 30362-30369, 2017 Nov 22.
Article in English | MEDLINE | ID: mdl-29115323

ABSTRACT

One-photon vacuum ultraviolet mass-analyzed threshold ionization (VUV-MATI) spectroscopy was used to characterize the essential conformations of tetrahydrofuran (THF) and thus determine the stereochemistry of the furanose ring constituting the backbones of DNA and RNA. Since the VUV-MATI spectrum of THF exactly corresponds to the vibrational spectrum of the gas-phase THF cation, the above cation was detected using time-of-flight mass spectrometry featuring the delayed pulsed-field ionization of the target in high Rydberg states by scanning the wavelength of the VUV pulse across the region of the vibrational spectrum. The position of the 0-0 band in the recorded VUV-MATI spectrum was extrapolated to the zero-field limit, allowing the adiabatic ionization energy of THF to be accurately estimated to be 9.4256 ± 0.0004 eV. The above ionization was assigned to a transition between C2-symmetric neutral (S0) and cationic (D0) ground states. The potential energy surfaces associated with molecular pseudorotation in the above states were constructed at the B3LYP/aug-cc-pVDZ level, being in good agreement with experimental observations. The twisted (C2-symmetric) and bent (CS-symmetric) conformers of the S0 state were predicted to be separated by a small interconversion barrier, whereas the D0 state exclusively existed in the C2 conformation. Based on the above, the peaks in the MATI spectrum were successfully assigned based on the Franck-Condon factors and vibrational frequencies calculated by varying the geometrical parameters of the C2 conformation, which determines the precise molecular structure of the THF cation.

7.
J Chem Phys ; 141(17): 174303, 2014 Nov 07.
Article in English | MEDLINE | ID: mdl-25381510

ABSTRACT

Ionization energies and cationic structures of pyridine were intensively investigated utilizing one-photon mass-analyzed threshold ionization (MATI) spectroscopy with vacuum ultraviolet radiation generated by four-wave difference frequency mixing in Kr. The present one-photon high-resolution MATI spectrum of pyridine demonstrated a much finer and richer vibrational structure than that of the previously reported two-photon MATI spectrum. From the MATI spectrum and photoionization efficiency curve, the accurate ionization energy of the ionic ground state of pyridine was confidently determined to be 73,570 ± 6 cm(-1) (9.1215 ± 0.0007 eV). The observed spectrum was almost completely assigned by utilizing Franck-Condon factors and vibrational frequencies calculated through adjustments of the geometrical parameters of cationic pyridine at the B3LYP/cc-pVTZ level. A unique feature unveiled through rigorous analysis was the prominent progression of the 10 vibrational mode, which corresponds to in-plane ring bending, and the combination of other totally symmetric fundamentals with the ring bending overtones, which contribute to the geometrical change upon ionization. Notably, the remaining peaks originate from the upper electronic state ((2)A2), as predicted by high-resolution photoelectron spectroscopy studies and symmetry-adapted cluster configuration interaction calculations. Based on the quantitatively good agreement between the experimental and calculated results, it was concluded that upon ionization the pyridine cation in the ground electronic state should have a planar structure of C(2v) symmetry through the C-N axis.

SELECTION OF CITATIONS
SEARCH DETAIL
...