Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
J Phys Chem C Nanomater Interfaces ; 125(42): 23445-23456, 2021 Oct 28.
Article in English | MEDLINE | ID: mdl-34737841

ABSTRACT

Colloidal supraparticles are micron-scale spherical assemblies of uniform primary particles, which exhibit emergent properties of a colloidal crystal, yet exist as a dispersible powder. A prerequisite to utilize these emergent functionalities is that the supraparticles maintain their mechanical integrity upon the mechanical impacts that are likely to occur during processing. Understanding how the internal structure relates to the resultant mechanical properties of a supraparticle is therefore of general interest. Here, we take the example of supraparticles templated from water/fluorinated oil emulsions in droplet-based microfluidics and explore the effect of surfactants on their mechanical properties. Stable emulsions can be generated by nonionic block copolymers consisting of a hydrophilic and fluorophilic block and anionic fluorosurfactants widely available under the brand name Krytox. The supraparticles formed in the presence of both types of surfactants appear structurally similar, but differ greatly in their mechanical properties. While the nonionic surfactant induces superior mechanical stability and ductile fracture behavior, the anionic Krytox surfactant leads to weak supraparticles with brittle fracture. We complement this macroscopic picture with Brillouin light spectroscopy that is very sensitive to the interparticle contacts for subnanometer-thick adsorbed layers atop of the nanoparticle. While the anionic Krytox does not significantly affect the interparticle bonds, the amphiphilic nonionic surfactant drastically strengthens these bonds to the point that individual particle vibrations are not resolved in the experimental spectrum. Our results demonstrate that seemingly subtle changes in the physicochemical properties of supraparticles can drastically impact the resultant mechanical properties.

2.
J Phys Chem C Nanomater Interfaces ; 125(27): 14854-14864, 2021 Jul 15.
Article in English | MEDLINE | ID: mdl-34295447

ABSTRACT

Particle vibrational spectroscopy has emerged as a new tool for the measurement of elasticity, glass transition, and interactions at a nanoscale. For colloid-based materials, however, the weakly localized particle resonances in a fluid or solid medium renders their detection difficult. The strong amplification of the inelastic light scattering near surface plasmon resonance of metallic nanoparticles (NPs) allowed not only the detection of single NP eigenvibrations but also the interparticle interaction effects on the acoustic vibrations of NPs mediated by strong optomechanical coupling. The "rattling" and quadrupolar modes of Ag/polymer and polymer-grafted Ag NPs with different diameters in their assemblies are probed by Brillouin light spectroscopy (BLS). We present thorough theoretical 3D calculations for anisotropic Ag elasticity to quantify the frequency and intensity of the "rattling" mode and hence its BLS activity for different interparticle separations and matrix rigidity. Theoretically, a liquidlike environment, e.g., poly(isobutylene) (PIB) does not support rattling vibration of Ag dimers but unexpectedly hardening of the extremely confined graft melt renders both activation of the former and a frequency blue shift of the fundamental quadrupolar mode in the grafted nanoparticle Ag@PIB film.

3.
J Colloid Interface Sci ; 579: 786-793, 2020 Nov 01.
Article in English | MEDLINE | ID: mdl-32673855

ABSTRACT

Colloidal crystals realized by self-assembled polymer nanoparticles have prominent attraction as a platform for various applications from assembling photonic and phononic crystals, acoustic metamaterials to coating applications. However, the fragility of these systems limits their application horizon. In this work the uniform mechanical reinforcement and tunability of 3D polystyrene colloidal crystals by means of cold soldering are reported. This structural strengthening is achieved by high pressure gas (N2 or Ar) plasticization at temperatures well below the glass transition. Brillouin light scattering is employed to monitor in-situ the mechanical vibrations of the crystal and thereby determine preferential pressure, temperature and time ranges for soldering, i.e. formation of physical bonding among the nanoparticles while maintaining the shape and translational order. This low-cost method is potentially useful for fabrication and tuning of durable devices including applications in photonics, phononics, acoustic metamaterials, optomechanics, surface coatings and nanolithography.

4.
Macromolecules ; 52(14): 5399-5406, 2019 Jul 23.
Article in English | MEDLINE | ID: mdl-31367064

ABSTRACT

Despite the growing application of nanostructured polymeric materials, there still remains a large gap in our understanding of polymer mechanics and thermal stability under confinement and near polymer-polymer interfaces. In particular, the knowledge of polymer nanoparticle thermal stability and mechanics is of great importance for their application in drug delivery, phononics, and photonics. Here, we quantified the effects of a polymer shell layer on the modulus and glass-transition temperature (T g) of polymer core-shell nanoparticles via Brillouin light spectroscopy and modulated differential scanning calorimetry, respectively. Nanoparticles consisting of a polystyrene (PS) core and shell layers of poly(n-butyl methacrylate) (PBMA) were characterized as model systems. We found that the high T g of the PS core was largely unaffected by the presence of an outer polymer shell, whereas the lower T g of the PBMA shell layer decreased with increasing PBMA thickness. The surface mobility was revealed at a temperature about 15 K lower than the T g of the PBMA shell layer. Overall, the modulus of the core-shell nanoparticles decreased with increasing PBMA shell layer thickness. These results suggest that the nanoparticle modulus and T g can be tuned independently through the control of nanoparticle composition and architecture.

5.
Nat Commun ; 9(1): 2918, 2018 07 25.
Article in English | MEDLINE | ID: mdl-30046038

ABSTRACT

Measuring polymer surface dynamics remains a formidable challenge of critical importance to applications ranging from pressure-sensitive adhesives to nanopatterning, where interfacial mobility is key to performance. Here, we introduce a methodology of Brillouin light spectroscopy to reveal polymer surface mobility via nanoparticle vibrations. By measuring the temperature-dependent vibrational modes of polystyrene nanoparticles, we identify the glass-transition temperature and calculate the elastic modulus of individual nanoparticles as a function of particle size and chemistry. Evidence of surface mobility is inferred from the first observation of a softening temperature, where the temperature dependence of the fundamental vibrational frequency of the nanoparticles reverses slope below the glass-transition temperature. Beyond the fundamental vibrational modes given by the shape and elasticity of the nanoparticles, another mode, termed the interaction-induced mode, was found to be related to the active particle-particle adhesion and dependent on the thermal behavior of nanoparticles.

6.
Macromolecules ; 51(21): 8522-8529, 2018 Nov 13.
Article in English | MEDLINE | ID: mdl-30906073

ABSTRACT

Advances in nanoparticle synthesis, self-assembly, and surface coating or patterning have enabled a diverse array of applications ranging from photonic and phononic crystal fabrication to drug delivery vehicles. One of the key obstacles restricting its potential is structural and thermal stability. The presence of a glass transition can facilitate deformation within nanoparticles, thus resulting in a significant alteration in structure and performance. Recently, we detected a glassy-state transition within individual polystyrene nanoparticles and related its origin to the presence of a surface layer with enhanced dynamics compared to the bulk. The presence of this mobile layer could have a dramatic impact on the thermal stability of polymer nanoparticles. Here, we demonstrate how the addition of a shell layer, as thin as a single polymer chain, atop the nanoparticles could completely eliminate any evidence of enhanced mobility at the surface of polystyrene nanoparticles. The ultrathin polymer shell layers were placed atop the nanoparticles via two approaches: (i) covalent bonding or (ii) electrostatic interactions. The temperature dependence of the particle vibrational spectrum, as recorded by Brillouin light scattering, was used to probe the surface mobility of nanoparticles with and without a shell layer. Beyond suppression of the surface mobility, the presence of the ultrathin polymer shell layers impacted the nanoparticle glass transition temperature and shear modulus, albeit to a lesser extent. The implication of this work is that the core-shell architecture allows for tailoring of the nanoparticle elasticity, surface softening, and glass transition temperature.

7.
Steroids ; 77(5): 355-9, 2012 Apr.
Article in English | MEDLINE | ID: mdl-22266736

ABSTRACT

Three new steroids 3-oxocholest-1,22-dien-12ß-ol (1), 3-oxocholest-1,4-dien-20ß-ol (2), 3-oxocholest-1,4-dien-12ß-ol (3), and three known steroids (20S)-20-Hydroxyergosta-1,4,24(28)-trien-3-one (4) [7a], 5α,8α-Epidioxycholesta-6,22-dien-3ß-ol (5) [10] and 5-cholestene-3ß,12ß-diol (6) [11] were isolated from a soft coral Dendronephthya gigantea. Their chemical structures and relative stereochemistry were elucidated by the analysis of HRMS and 2-D NMR spectroscopic data. The steroids 1 and 2 showed notable inhibitory activity against farnesoid X-activated receptor (FXR) with IC(50)'s 14 and 15µM.


Subject(s)
Anthozoa/chemistry , Receptors, Cytoplasmic and Nuclear/antagonists & inhibitors , Sterols/isolation & purification , Sterols/pharmacology , Animals , Cell Line , Cell Survival/drug effects , Cholesterol/analogs & derivatives , Cholesterol/chemistry , Cholesterol/pharmacology , Dose-Response Relationship, Drug , Humans , Inhibitory Concentration 50 , Magnetic Resonance Spectroscopy , Molecular Structure , Receptors, Cytoplasmic and Nuclear/genetics , Receptors, Cytoplasmic and Nuclear/metabolism , Sterols/chemistry , Transfection
SELECTION OF CITATIONS
SEARCH DETAIL
...