Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 14(1): 5690, 2023 09 14.
Article in English | MEDLINE | ID: mdl-37709760

ABSTRACT

Generating primordial germ cell-like cells (PGCLCs) from human pluripotent stem cells (hPSCs) advances studies of human reproduction and development of infertility treatments, but often entails complex 3D aggregates. Here we develop a simplified, monolayer method to differentiate hPSCs into PGCs within 3.5 days. We use our simplified differentiation platform and single-cell RNA-sequencing to achieve further insights into PGCLC specification. Transient WNT activation for 12 h followed by WNT inhibition specified PGCLCs; by contrast, sustained WNT induced primitive streak. Thus, somatic cells (primitive streak) and PGCLCs are related-yet distinct-lineages segregated by temporally-dynamic signaling. Pluripotency factors including NANOG are continuously expressed during the transition from pluripotency to posterior epiblast to PGCs, thus bridging pluripotent and germline states. Finally, hPSC-derived PGCLCs can be easily purified by virtue of their CXCR4+PDGFRA-GARP- surface-marker profile and single-cell RNA-sequencing reveals that they harbor transcriptional similarities with fetal PGCs.


Subject(s)
Embryonic Development , Germ Cells , Humans , Cell Differentiation , Fetus , RNA
2.
Science ; 375(6579): eabk2346, 2022 01 28.
Article in English | MEDLINE | ID: mdl-35084970

ABSTRACT

The human cortex contains inhibitory interneurons derived from the medial ganglionic eminence (MGE), a germinal zone in the embryonic ventral forebrain. How this germinal zone generates sufficient interneurons for the human brain remains unclear. We found that the human MGE (hMGE) contains nests of proliferative neuroblasts with ultrastructural and transcriptomic features that distinguish them from other progenitors in the hMGE. When dissociated hMGE cells are transplanted into the neonatal mouse brain, they reform into nests containing proliferating neuroblasts that generate young neurons that migrate extensively into the mouse forebrain and mature into different subtypes of functional interneurons. Together, these results indicate that the nest organization and sustained proliferation of neuroblasts in the hMGE provide a mechanism for the extended production of interneurons for the human forebrain.


Subject(s)
Interneurons/physiology , Median Eminence/embryology , Neural Stem Cells/physiology , Neurogenesis , Prosencephalon/cytology , Animals , Animals, Newborn , Cell Movement , Cell Proliferation , Cerebral Cortex/cytology , Cerebral Cortex/embryology , Cerebral Cortex/growth & development , GABAergic Neurons/cytology , GABAergic Neurons/physiology , Gene Expression Profiling , Gestational Age , Humans , Interneurons/cytology , Median Eminence/cytology , Median Eminence/growth & development , Mice , Neural Stem Cells/transplantation , Prosencephalon/embryology , Prosencephalon/growth & development , Transplantation, Heterologous
3.
J Neurosci ; 41(12): 2554-2565, 2021 03 24.
Article in English | MEDLINE | ID: mdl-33762407

ABSTRACT

Adult hippocampal neurogenesis was originally discovered in rodents. Subsequent studies identified the adult neural stem cells and found important links between adult neurogenesis and plasticity, behavior, and disease. However, whether new neurons are produced in the human dentate gyrus (DG) during healthy aging is still debated. We and others readily observe proliferating neural progenitors in the infant hippocampus near immature cells expressing doublecortin (DCX), but the number of such cells decreases in children and few, if any, are present in adults. Recent investigations using dual antigen retrieval find many cells stained by DCX antibodies in adult human DG. This has been interpreted as evidence for high rates of adult neurogenesis, even at older ages. However, most of these DCX-labeled cells have mature morphology. Furthermore, studies in the adult human DG have not found a germinal region containing dividing progenitor cells. In this Dual Perspectives article, we show that dual antigen retrieval is not required for the detection of DCX in multiple human brain regions of infants or adults. We review prior studies and present new data showing that DCX is not uniquely expressed by newly born neurons: DCX is present in adult amygdala, entorhinal and parahippocampal cortex neurons despite being absent in the neighboring DG. Analysis of available RNA-sequencing datasets supports the view that DG neurogenesis is rare or absent in the adult human brain. To resolve the conflicting interpretations in humans, it is necessary to identify and visualize dividing neuronal precursors or develop new methods to evaluate the age of a neuron at the single-cell level.


Subject(s)
Hippocampus/cytology , Hippocampus/physiology , Neurogenesis/physiology , Neurons/physiology , Adult , Cell Differentiation/physiology , Child , Humans , Neuronal Plasticity/physiology
4.
Stem Cells Dev ; 27(20): 1438-1448, 2018 10 15.
Article in English | MEDLINE | ID: mdl-30153084

ABSTRACT

Human induced pluripotent stem cells (iPSCs) have the potential to repair/regenerate smooth muscle cells (SMCs) in different organs. However, there are many challenges in their translation to clinical therapies. In this study, we describe our observations of in vitro SMC differentiation in three iPSC lines derived from human fibroblasts using retroviral, episomal, and mRNA/miRNA reprogramming methods. We sought to elucidate correlations between differentiation characteristics and efficiencies that can facilitate large-scale production of differentiated cells for clinical applications, and to report differences in pluripotency marker expression in differentiated cells from different iPSC lines. A standardized SMC differentiation protocol was used to induce the CD31+/CD34+ vascular progenitor cell phenotype. These were sorted by magnetic-activated (MACS) and fluorescence-activated cell sorting (FACS), and then treated with PDGF-BB and smooth muscle growth medium for further differentiation into smooth muscle progenitor cells (pSMCs). The expression of SMC and pluripotency markers in early- and late-passage (P1 and P4) pSMCs was analyzed. A total of 36 differentiation runs was performed on the three patient iPSC lines. All pSMC populations expressed SMC markers and Ki67 consistent with the progenitor phenotype. Initial iPSC density correlated positively with the sorted cell FACS efficiency, and this correlation could be fit to a quadratic equation. We also observed that a specific "honeycomb" pattern of the starting cultured iPSCs cultured correlated with higher efficiency in all three iPSC lines. Pluripotency marker expression decreased significantly to nearly undetectable levels in all three lines. There was no significant change in SMC and pluripotent marker expression between passage 1 and 4. In summary, our observations suggest that the method of iPSC reprogramming does not affect iPSC differentiation into pSMCs. Protocol efficiency can be modeled mathematically and coupled with the initial "honeycomb" cell pattern to optimize production of large cell numbers for clinical therapies.


Subject(s)
Cell Differentiation/genetics , Induced Pluripotent Stem Cells/cytology , Myocytes, Smooth Muscle/cytology , Regeneration/genetics , Antigens, CD34/genetics , Becaplermin/pharmacology , Cell Line , Fibroblasts/cytology , Fibroblasts/metabolism , Gene Expression Regulation, Developmental , Humans , Induced Pluripotent Stem Cells/metabolism , Ki-67 Antigen/genetics , Myoblasts/cytology , Myoblasts/metabolism , Myocytes, Smooth Muscle/metabolism , Platelet Endothelial Cell Adhesion Molecule-1/genetics
5.
Oncotarget ; 8(32): 52345-52356, 2017 Aug 08.
Article in English | MEDLINE | ID: mdl-28881734

ABSTRACT

Chemoresistant cancer cells express high levels of aldehyde dehydrogenases (ALDHs), particularly in head and neck squamous cell carcinoma (HNSCC). The ALDH family of enzymes detoxify both exogenous and endogenous aldehydes. Since many chemotherapeutic agents, such as cisplatin, result in the generation of cytotoxic aldehydes and oxidative stress, we hypothesized that cells expressing high levels of ALDH may be more chemoresistant due to their increased detoxifying capacity and that inhibitors of ALDHs may sensitize them to these drugs. Here, we show that overall ALDH activity is increased with cisplatin treatment of HNSCC and that ALDH3A1 protein expression is particularly enriched in cells treated with cisplatin. Activation of ALDH3A1 by a small molecule activator (Alda-89) increased survival of HNSCC cells treated with cisplatin. Conversely, treatment with a novel small molecule ALDH inhibitor (Aldi-6) resulted in a marked decrease in cell viability, and the combination of Aldi-6 and cisplatin resulted in a more pronounced reduction of cell viability and a greater reduction in tumor burden in vivo than what was observed with cisplatin alone. These data indicate that ALDH3A1 contributes to cisplatin resistance in HNSCC and that the targeting of ALDH, specifically, ALDH3A1, appears to be a promising strategy in this disease.

6.
Dev Cell ; 38(1): 100-15, 2016 07 11.
Article in English | MEDLINE | ID: mdl-27404362

ABSTRACT

Human preimplantation embryo development involves complex cellular and molecular events that lead to the establishment of three cell lineages in the blastocyst: trophectoderm, primitive endoderm, and epiblast. Owing to limited resources of biological specimens, our understanding of how the earliest lineage commitments are regulated remains narrow. Here, we examined gene expression in 241 individual cells from early and late human blastocysts to delineate dynamic gene-expression changes. We distinguished all three lineages and further developed a 3D model of the inner cell mass and trophectoderm in which individual cells were mapped into distinct expression domains. We identified in silico precursors of the epiblast and primitive endoderm lineages and revealed a role for MCRS1, TET1, and THAP11 in epiblast formation and their ability to induce naive pluripotency in vitro. Our results highlight the potential of single-cell gene-expression analysis in human preimplantation development to instruct human stem cell biology.


Subject(s)
Blastocyst/cytology , Cell Lineage/genetics , Endoderm/cytology , Gene Expression Profiling , Germ Layers/cytology , Pluripotent Stem Cells/cytology , Single-Cell Analysis/methods , Biomarkers/metabolism , Blastocyst/metabolism , Cell Differentiation , Embryonic Development , Endoderm/metabolism , Gene Expression Regulation, Developmental , Genes, Developmental , Germ Layers/metabolism , Humans , Mixed Function Oxygenases/genetics , Nuclear Proteins/genetics , Pluripotent Stem Cells/metabolism , Proto-Oncogene Proteins/genetics , RNA-Binding Proteins/genetics , Repressor Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...