Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Nano ; 9(11): 10941-9, 2015 Nov 24.
Article in English | MEDLINE | ID: mdl-26435403

ABSTRACT

Over the past few years the performance of colloidal quantum dot-light-emitting diode (QLED) has been progressively improved. However, most of QLED work has been fulfilled in the form of monochromatic device, while full-color-enabling white QLED still remains nearly unexplored. Using red, green, and blue quantum dots (QDs), herein, we fabricate bichromatic and trichromatic QLEDs through sequential solution-processed deposition of poly(9-vinlycarbazole) (PVK) hole transport layer, two or three types of QDs-mixed multilayer, and ZnO nanoparticle electron transport layer. The relative electroluminescent (EL) spectral ratios of constituent QDs in the above multicolored devices are found to inevitably vary with applied bias, leading to the common observation of an increasing contribution of a higher-band gap QD EL over low-band gap one at a higher voltage. The white EL from a trichromatic device is resolved into its primary colors through combining with color filters, producing an exceptional color gamut of 126% relative to National Television Systems Committee (NTSC) color space that a state-of-the-art full-color organic LED counterpart cannot attain. Our trichromatic white QLED also displays the record-high EL performance such as the peak values of 23,352 cd/m(2) in luminance, 21.8 cd/A in current efficiency, and 10.9% in external quantum efficiency.

2.
Nanoscale ; 7(12): 5363-70, 2015 Mar 12.
Article in English | MEDLINE | ID: mdl-25721494

ABSTRACT

Until now most work on colloidal quantum dot-light-emitting diodes (QLEDs) has been focused on the improvement of the electroluminescent (EL) performance of monochromatic devices, and multi-colored white QLEDs comprising more than one type of QD emitter have been rarely investigated. To demonstrate a white EL as a result of color mixing between blue and yellow, herein a unique combination of two dissimilar QDs of blue- CdZnS/ZnS plus a yellow-emitting Cu-In-S (CIS)/ZnS is used for the formation of the emitting layer (EML) of a multilayered QLED. First, the QLED consisting of a single EML randomly mixed with two QDs is fabricated, however, its EL is dominated by blue emission with the contribution of yellow emission substantially weaker. Thus, another EML configuration is devised in the form of a QD bilayer with two stacking sequences of CdZnS/ZnS//CIS/ZnS QD and vice versa. The QLED with the former stacking sequence shows an overwhelming contribution of blue EL, similar to the mixed QD EML-based device. Upon applying the oppositely stacked QD bilayer of CIS/ZnS//CdZnS/ZnS, however, a bicolored white EL can be successfully achieved by means of the effective extension of the radiative excitonic recombination zone throughout both QD EML regions. Such QD EML configuration-dependent EL results, which are discussed primarily using the proposed device energy level diagram, strongly suggest that the positional design of individual QD emitters is a critical factor for the realization of multicolored, white emissive devices.

3.
ACS Nano ; 8(5): 4893-901, 2014 May 27.
Article in English | MEDLINE | ID: mdl-24758609

ABSTRACT

Green CdSe@ZnS quantum dots (QDs) of 9.5 nm size with a composition gradient shell are first prepared by a single-step synthetic approach, and then 12.7 nm CdSe@ZnS/ZnS QDs, the largest among ZnS-shelled visible-emitting QDs available to date, are obtained through the overcoating of an additional 1.6 nm thick ZnS shell. Two QDs of CdSe@ZnS and CdSe@ZnS/ZnS are incorporated into the solution-processed hybrid QD-based light-emitting diode (QLED) structure, where the QD emissive layer (EML) is sandwiched by poly(9-vinlycarbazole) and ZnO nanoparticles as hole and electron-transport layers, respectively. We find that the presence of an additional ZnS shell makes a profound impact on device performances such as luminance and efficiencies. Compared to CdSe@ZnS QD-based devices the efficiencies of CdSe@ZnS/ZnS QD-based devices are overwhelmingly higher, specifically showing unprecedented values of peak current efficiency of 46.4 cd/A and external quantum efficiency of 12.6%. Such excellent results are likely attributable to a unique structure in CdSe@ZnS/ZnS QDs with a relatively thick ZnS outer shell as well as a well-positioned intermediate alloyed shell, enabling the effective suppression of nonradiative energy transfer between closely packed EML QDs and Auger recombination at charged QDs.

SELECTION OF CITATIONS
SEARCH DETAIL
...