Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 133
Filter
Add more filters










Publication year range
1.
Biomol Ther (Seoul) ; 32(1): 136-145, 2024 Jan 01.
Article in English | MEDLINE | ID: mdl-37424516

ABSTRACT

People with obesity maintain low levels of inflammation; therefore, their exposure to foreign antigens can trigger an excessive immune response. In people with obesity or allergic contact dermatitis (ACD), symptoms are exacerbated by a reduction in the number of regulatory T cells (Tregs) and IL-10/TGF-ß-modified macrophages (M2 macrophages) at the inflammatory site. Benefits of intermittent fasting (IF) have been demonstrated for many diseases; however, the immune responses regulated by macrophages and CD4+T cells in obese ACD animal models are poorly understood. Therefore, we investigated whether IF suppresses inflammatory responses and upregulates the generation of Tregs and M2 macrophages in experimental ACD animal models of obese mice. The IF regimen relieved various ACD symptoms in inflamed and adipose tissues. We showed that the IF regimen upregulates Treg generation in a TGF-ß-dependent manner and induces CD4+T cell hypo-responsiveness. IF-M2 macrophages, which strongly express TGF-ß and inhibit CD4+T cell proliferation, directly regulated Treg differentiation from CD4+T cells. These results indicate that the IF regimen enhances the TGF-ß-producing ability of M2 macrophages and that the development of Tregs keeps mice healthy against ACD exacerbated by obesity. Therefore, the IF regimen may ameliorate inflammatory immune disorders caused by obesity.

2.
PLoS Negl Trop Dis ; 17(8): e0011586, 2023 08.
Article in English | MEDLINE | ID: mdl-37639474

ABSTRACT

Knowledge about mitogenomes has been proven to be essential in human parasite diagnostics and understanding of their diversity. However, the lack of substantial data for comparative analysis is still a challenge in Trichuris trichiura research. To provide high quality mitogenomes, we utilized long-read sequencing technology of Oxford Nanopore Technologies (ONT) to better resolve repetitive regions and to construct de novo mitogenome assembly minimizing reference biases. In this study, we got three de novo assembled mitogenomes of T. trichiura isolated from Korean individuals. These circular complete mitogenomes of T. trichiura are 14,508 bp, 14,441 bp, and 14,440 bp in length. A total of 37 predicted genes were identified consisting of 13 protein-coding genes (PCGs), 22 transfer RNA (tRNAs) genes, two ribosomal RNA (rRNA) genes (rrnS and rrnL), and two non-coding regions. Interestingly, the assembled mitogenome has up to six times longer AT-rich regions than previous reference sequences, thus proving the advantage of long-read sequencing in resolving unreported non-coding regions. Furthermore, variant detection and phylogenetic analysis using concatenated protein coding genes, cox1, rrnL, and nd1 genes confirmed the distinct molecular identity of this newly assembled mitogenome while at the same time showing high genetic relationship with sequences from China or Tanzania. Our study provided a new set of reference mitogenome with better contiguity and resolved repetitive regions that could be used for meaningful phylogenetic analysis to further understand disease transmission and parasite biology.


Subject(s)
Genome, Mitochondrial , Nanopores , Humans , Animals , Trichuris/genetics , Phylogeny , Republic of Korea
3.
Ecotoxicol Environ Saf ; 249: 114443, 2023 Jan 01.
Article in English | MEDLINE | ID: mdl-38321662

ABSTRACT

Air pollution is an emerging cause of mortality, affecting nearly 5 million people each year. Exposure to diesel exhaust fine particulate matter (PM2.5) aggravates respiratory and skin conditions. However, its impact on the protective immunity of the skin remains poorly understood. This study aimed to investigate the underlying molecular mechanism for adverse effects of PM2.5 on the host protective immunity using in vitro cell and in vivo mouse model. Intracellular translocation of Toll-like receptor 9 (TLR9) and CpG-DNA internalization were assessed in dendritic cells without or with PM2.5 treatment using immunofluorescence staining. Cytokine and nitric oxide production were measured in dendritic cells and macrophages without or with PM2.5 treatment. NF-κB and MAPK signaling was determined using western blotting. Skin disease severity, bacterial loads, and cytokine production were assessed in cutaneous Staphylococcus aureus (S. aureus) infection mouse model. PM2.5 interfered with TLR9 activation by inhibiting both TLR9 trafficking to early endosomes and CpG-DNA internalization via clathrin-mediated endocytosis. In addition, exposure to PM2.5 inhibited various TLR-mediated nitric oxide and cytokine production as well as MAPK and NF-κB signaling. PM2.5 rendered mice more susceptible to staphylococcal skin infections. Our results suggest that exposure to PM impairs TLR signaling and dampens the host defense against staphylococcal skin infections. Our data provide a novel perspective into the impact of PM on protective immunity which is paramount to revealing air pollutant-mediated toxicity on the host immunity.


Subject(s)
Staphylococcal Infections , Staphylococcal Skin Infections , Humans , Animals , Mice , Particulate Matter/toxicity , Toll-Like Receptor 9 , Vehicle Emissions , NF-kappa B , Staphylococcus aureus , Nitric Oxide , Toll-Like Receptors , Cytokines , Staphylococcal Skin Infections/chemically induced , Staphylococcal Infections/chemically induced , Staphylococcal Infections/microbiology , DNA
4.
Nutrients ; 14(24)2022 Dec 16.
Article in English | MEDLINE | ID: mdl-36558517

ABSTRACT

Hair loss remains a significant problem that is difficult to treat; therefore, there is a need to identify safe natural materials that can help patients with hair loss. We evaluated the hair anagen activation effects of limonin, which is abundant in immature citrus fruits. Limonin increased the proliferation of rat dermal papilla cells (rDPC) by changing the levels of cyclin D1 and p27, and increasing the number of BrdU-positive cells. Limonin increased autophagy by decreasing phosphorylated mammalian target of rapamycin levels and increasing the phospho-Raptor, ATG7 and LC3B. Limonin also activated the Wnt/ß-catenin pathway by increasing phospho-ß-catenin levels. XAV939, a Wnt/ß-catenin inhibitor, inhibited these limonin-induced changes, including induced autophagy, BrdU-positive cells, and cell proliferation. Limonin increased the phosphorylated AKT levels in both two-dimensional cultured rDPC and three-dimensional spheroids. Treatment with the PI3K inhibitor wortmannin inhibited limonin-induced proliferation, and disrupted other limonin-mediated changes, including decreased p27, increased BrdU-positive cells, induced autophagy, and increased ATG7 and LC3B levels. Wortmannin also inhibited limonin-induced cyclin D1 and LC3 expression in spheroids. Collectively, these results indicate that limonin can enhance anagen signaling by activating autophagy via targeting the Wnt/ß-catenin and/or PI3K/AKT pathways in rDPC, highlighting a candidate nutrient for hair loss treatment.


Subject(s)
Hair Follicle , Limonins , Animals , Rats , Alopecia , beta Catenin/metabolism , Bromodeoxyuridine/metabolism , Cell Proliferation , Cells, Cultured , Cyclin D1/metabolism , Fruit/metabolism , Limonins/pharmacology , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Wnt Signaling Pathway , Wortmannin/metabolism , Wortmannin/pharmacology
5.
J Fungi (Basel) ; 8(9)2022 Aug 24.
Article in English | MEDLINE | ID: mdl-36135626

ABSTRACT

The increase and dissemination of antimicrobial resistance is a global public health issue. To address this, new antimicrobial agents have been developed. Antimicrobial peptides (AMPs) exhibit a wide range of antimicrobial activities against pathogens, including bacteria and fungi. Lycosin-II, isolated from the venom of the spider Lycosa singoriensis, has shown antibacterial activity by disrupting membranes. However, the mode of action of Lycosin-II and its antifungal activity have not been clearly described. Therefore, we confirmed that Lycosin-II showed antifungal activity against Candida albicans (C. albicans). To investigate the mode of action, membrane-related assays were performed, including an evaluation of C. albicans membrane depolarization and membrane integrity after exposure to Lycosin-II. Our results indicated that Lycosin-II damaged the C. albicans membrane. Additionally, Lycosin-II induced oxidative stress through the generation of reactive oxygen species (ROS) in C. albicans. Moreover, Lycosin-II exhibited an inhibitory effect on dual-species biofilm formation by C. albicans and Staphylococcus aureus (S. aureus), which are the most co-isolated fungi and bacteria. These results revealed that Lycosin-II can be utilized against C. albicans and dual-species strain infections.

6.
Molecules ; 27(7)2022 Mar 28.
Article in English | MEDLINE | ID: mdl-35408575

ABSTRACT

Various studies addressing the increasing problem of hair loss, using natural products with few side effects, have been conducted. 5-bromo-3,4-dihydroxybenzaldehyde (BDB) exhibited anti-inflammatory effects in mouse models of atopic dermatitis and inhibited UVB-induced oxidative stress in keratinocytes. Here, we investigated its stimulating effect and the underlying mechanism of action on hair growth using rat vibrissa follicles and dermal papilla cells (DPCs), required for the regulation of hair cycle and length. BDB increased the length of hair fibers in rat vibrissa follicles and the proliferation of DPCs, along with causing changes in the levels of cell cycle-related proteins. We investigated whether BDB could trigger anagen-activating signaling pathways, such as the Wnt/ß-catenin pathway and autophagy in DPCs. BDB induces activation of the Wnt/ß-catenin pathway through the phosphorylation of GSG3ß and ß-catenin. BDB increased the levels of autophagic vacuoles and autophagy regulatory proteins Atg7, Atg5, Atg16L, and LC3B. We also investigated whether BDB inhibits the TGF-ß pathway, which promotes transition to the catagen phase. BDB inhibited the phosphorylation of Smad2 induced by TGF-ß1. Thus, BDB can promote hair growth by modulating anagen signaling by activating Wnt/ß-catenin and autophagy pathways and inhibiting the TGF-ß pathway in DPCs.


Subject(s)
Benzaldehydes , Hair , Transforming Growth Factor beta , Wnt Signaling Pathway , Animals , Autophagy , Benzaldehydes/pharmacology , Cell Cycle Proteins/metabolism , Cell Proliferation , Cells, Cultured , Hair/growth & development , Hair Follicle/metabolism , Rats , Transforming Growth Factor beta/metabolism , beta Catenin/metabolism
7.
Biomol Ther (Seoul) ; 29(5): 545-550, 2021 Sep 01.
Article in English | MEDLINE | ID: mdl-33814416

ABSTRACT

Chemotherapy-induced alopecia and hair loss can be stressful in patients with cancer. The hair grows back, but sometimes the hair tends to stay thin. Therefore, understanding mechanisms regulating hair regeneration may improve the management of chemotherapy-induced alopecia. Previous studies have revealed that chemotherapeutic agents induce a hair follicle vascular injury. As hair growth is associated with micro-vessel regeneration, we postulated that the stimulation of angiogenesis might enhance hair regeneration. In particular, mice treated with 5-fluorouracil (5-FU) showed delayed anagen initiation and reduced capillary density when compared with untreated controls, suggesting that the retardation of anagen initiation by 5-FU treatment may be attributed to the loss of perifollicular micro-vessels. We investigated whether the ETS transcription factor ETV2 (aka ER71), critical for vascular development and regeneration, can promote angiogenesis and hair regrowth in a 5-FU-induced alopecia mouse model. Tie2-Cre; Etv2 conditional knockout (CKO) mice, which lack Etv2 in endothelial cells, presented similar hair regrowth rates as the control mice after depilation. Following 5-FU treatment, Tie2-Cre; Etv2 CKO mice revealed a significant reduction in capillary density, anagen induction, and hair restoration when compared with controls. Mice receiving lentiviral Etv2 injection after 5-FU treatment showed significantly improved anagen induction and hair regrowth. Two-photon laser scanning microscopy revealed that enforced Etv2 expression restored normal vessel morphology after 5-FU mediated vessel injury. Our data suggest that vessel regeneration strategies may improve hair regrowth after chemotherapeutic treatment.

9.
Adv Healthc Mater ; 10(11): e2002287, 2021 06.
Article in English | MEDLINE | ID: mdl-33930253

ABSTRACT

Infectious keratitis is mainly treated with topical antibiotics. To achieve and maintain the required therapeutic concentration in the cornea where the tear fluid continuously rinses the surface, the antibiotics must be frequently applied, even while the patient is sleeping, and oral medication is sometimes required. However, the inevitably poor compliance and avascular nature of the cornea decrease drug bioavailability. In this study, a single microneedle (MN) is injected into the cornea to substitute for the repeated application of eyedrops in the treatment of infectious keratitis. After comparing the mechanical integrity and drug release profiles of three different drug-tips, the drug-tip with the "high" drug concentration that releases 12.5 ng drug within 3 days is applied to a cornea to evaluate the transferability and in vivo drug release. In the treatment of infectious keratitis with repeated application of eyedrops for six consecutive days, a single MN injection is substituted for the initial 3 days of eyedrop applications. The progression remains similarly attenuated after 3 days without eyedrops, and comparable efficacy is achieved on day 6 when combined with delayed eyedrop treatment from day 3. Thus, the single administration of a biodegradable MN can substitute for the repeated application of eyedrops in the treatment of infectious keratitis.


Subject(s)
Keratitis , Administration, Topical , Cornea , Humans , Keratitis/drug therapy , Needles , Ophthalmic Solutions/therapeutic use , Tears
10.
Sci Rep ; 11(1): 4183, 2021 02 18.
Article in English | MEDLINE | ID: mdl-33603075

ABSTRACT

Acanthamoeba castellanii, the causative agent of Acanthamoeba keratitis (AK), occurs mainly in contact lens users with poor eye hygiene. The findings of many in vitro studies of AK, as well as the testing of therapeutic drugs, need validation in in vivo experiments. BALB/c mice were used in this study to establish in vivo AK model. A. castellanii cell suspensions (equal mixtures of trophozoites and cysts) were loaded onto 2-mm contact lens pieces and inserted into mouse eyes that were scratched using an ophthalmic surgical blade under anesthesia and the eyelids of the mice were sutured. The AK signs were grossly observed and PCR was performed using P-FLA primers to amplify the Acanthamoeba 18S-rRNA gene from mouse ocular tissue. The experimental AK mouse model was characterized by typical hazy blurring and melting of the mouse cornea established on day 1 post-inoculation. AK was induced with at least 0.3 × 105 A. castellanii cells (optimal number, 5 × 104), and the infection persisted for two months. The PCR products amplified from the extracted mouse eye DNA confirmed the development of Acanthamoeba-induced keratitis during the infection periods. In conclusion, the present AK mouse model may serve as an important in vivo model for the development of various therapeutic drugs against AK.


Subject(s)
Acanthamoeba Keratitis/microbiology , Acanthamoeba castellanii/genetics , DNA/genetics , Animals , Contact Lenses/microbiology , Cornea/microbiology , Disease Models, Animal , Female , Mice , Mice, Inbred BALB C , Trophozoites/genetics
11.
Biomol Ther (Seoul) ; 29(2): 211-219, 2021 Mar 01.
Article in English | MEDLINE | ID: mdl-33518533

ABSTRACT

Alopecia is a distressing condition caused by the dysregulation of anagen, catagen, and telogen in the hair cycle. Dermal papilla cells (DPCs) regulate the hair cycle and play important roles in hair growth and regeneration. Myristoleic acid (MA) increases Wnt reporter activity in DPCs. However, the action mechanisms of MA on the stimulation of anagen signaling in DPCs is not known. In this study, we evaluated the effects of MA on anagen-activating signaling pathways in DPCs. MA significantly increased DPC proliferation and stimulated the G2/M phase, accompanied by increasing cyclin A, Cdc2, and cyclin B1. To elucidate the mechanism by which MA promotes DPC proliferation, we evaluated the effect of MA on autophagy and intracellular pathways. MA induced autophagosome formation by decreasing the levels of the phospho-mammalian target of rapamycin (phospho-mTOR) and increasing autophagy-related 7 (Atg7) and microtubule-associated protein 1A/1B-light chain 3II (LC3II). MA also increased the phosphorylation levels of Wnt/ß-catenin proteins, such as GSK3ß (Ser9) and ß-catenin (Ser552 and Ser675). Treatment with XAV939, an inhibitor of the Wnt/ß-catenin pathway, attenuated the MA-induced increase in ß-catenin nuclear translocation. Moreover, XAV939 reduced MA-induced effects on cell cycle progression, autophagy, and DPC proliferation. On the other hand, MA increased the levels of phospho (Thr202/Tyr204)-extracellular signal regulated kinases (ERK). MA-induced ERK phosphorylation led to changes in the expression levels of Cdc2, Atg7 and LC3II, as well as DPC proliferation. Our results suggest that MA promotes anagen signaling via autophagy and cell cycle progression by activating the Wnt/ß-catenin and ERK pathways in DPCs.

12.
Exp Eye Res ; 201: 108275, 2020 12.
Article in English | MEDLINE | ID: mdl-32991884

ABSTRACT

Retina, one of the highest oxygen demanding tissues, is vulnerable to vascular insufficiencies, and various ocular vascular disorders can cause chronic retinal ischemia. To investigate the pathophysiology, rodent models developed by bilateral common carotid artery occlusion (BCCAO) have been utilized. However, mice lack posterior communicating arteries in the circle of Willis and cannot endure the brain ischemia induced by the bilateral occlusion. A mouse model to better reflect the localized ischemic stress in the retina without affecting the brain is still needed. Here, we established a mouse model of ischemic injury by permanent unilateral common carotid artery occlusion (UCCAO). Adult male mice were subjected to UCCAO, and changes in the ipsilateral retina were examined in comparison with the contralateral retina. Delayed perfusion was observed in the ipsilateral retina right after the occlusion and was not recovered later on. Common features of retinal ischemia were observed: hypoxia-inducible factor (HIF) stabilization; upregulation of hypoxia-responsive genes; altered levels of cytokines and chemokines. Activation of astrocytes and Müller cells in the inner retina was detected at day 2, and thinning of the inner retinal layer became significant at week 10. Together, our model can simulate retinal ischemia with morphological and molecular changes. It can be utilized to investigate pathophysiology of ischemic retinopathies.


Subject(s)
Carotid Stenosis/complications , Ischemia/physiopathology , Regional Blood Flow/physiology , Retina/physiopathology , Retinal Diseases/physiopathology , Retinal Vessels/physiopathology , Animals , Disease Models, Animal , Ischemia/etiology , Male , Mice , Mice, Inbred C57BL , Retina/pathology , Retinal Diseases/etiology
13.
Int J Mol Sci ; 21(12)2020 Jun 26.
Article in English | MEDLINE | ID: mdl-32604799

ABSTRACT

The hair follicle goes through repetitive cycles including anagen, catagen, and telogen. The interaction of dermal papilla cells (DPCs) and keratinocytes regulates the hair cycle and hair growth. Humanin was discovered in the surviving brain cells of patients with Alzheimer's disease. HNG, a humanin analogue, activates cell growth, proliferation, and cell cycle progression, and it protects cells from apoptosis. This study was performed to investigate the promoting effect and action mechanisms of HNG on hair growth. HNG significantly increased DPC proliferation. HNG significantly increased hair shaft elongation in vibrissa hair follicle organ culture. In vivo experiment showed that HNG prolonged anagen duration and inhibited hair follicle cell apoptosis, indicating that HNG inhibited the transition from the anagen to catagen phase mice. Furthermore, HNG activated extracellular signal-regulated kinase (Erk)1/2, Akt, and signal transducer and activator of transcription (Stat3) within minutes and up-regulated vascular endothelial growth factor (VEGF) levels on DPCs. This means that HNG could induce the anagen phase longer by up-regulating VEGF, which is a Stat3 target gene and one of the anagen maintenance factors. HNG stimulated the anagen phase longer with VEGF up-regulation, and it prevented apoptosis by activating Erk1/2, Akt, and Stat3 signaling.


Subject(s)
Dermis/growth & development , Hair Follicle/growth & development , Hair/growth & development , Intracellular Signaling Peptides and Proteins/pharmacology , Animals , Apoptosis , Cell Cycle , Cell Proliferation , Cells, Cultured , Dermis/drug effects , Dermis/metabolism , Female , Hair/drug effects , Hair/metabolism , Hair Follicle/drug effects , Hair Follicle/metabolism , Intracellular Signaling Peptides and Proteins/chemistry , Male , Mice , Mice, Inbred C57BL , Rats , Rats, Wistar , Skin Physiological Phenomena
14.
Biomol Ther (Seoul) ; 28(4): 354-360, 2020 Jul 01.
Article in English | MEDLINE | ID: mdl-32394669

ABSTRACT

The hair cycle (anagen, catagen, and telogen) is regulated by the interaction between mesenchymal cells and epithelial cells in the hair follicles. The proliferation of dermal papilla cells (DPCs), mesenchymal-derived fibroblasts, has emerged as a target for the regulation of the hair cycle. Here, we show that vanillic acid, a phenolic acid from wheat bran, promotes the proliferation of DPCs via a PI3K/Akt/Wnt/ß-catenin dependent mechanism. Vanillic acid promoted the proliferation of DPCs, accompanied by increased levels of cell-cycle proteins cyclin D1, CDK6, and Cdc2 p34. Vanillic acid also increased the levels of phospho(ser473)- Akt, phospho(ser780)-pRB, and phospho(thr37/46)-4EBP1 in a time-dependent manner. Wortmannin, an inhibitor of the PI3K/ Akt pathway, attenuated the vanillic acid-mediated proliferation of DPCs. Vanillic acid-induced progression of the cell-cycle was also suppressed by wortmannin. Moreover, vanillic acid increased the levels of Wnt/ß-catenin proteins, such as phospho(ser9)- glycogen synthase kinase-3ß, phospho(ser552)-ß-catenin, and phospho(ser675)-ß-catenin. We found that vanillic acid increased the levels of cyclin D1 and Cox-2, which are target genes of ß-catenin, and these changes were inhibited by wortmannin. To investigate whether vanillic acid affects the downregulation of ß-catenin by dihydrotestosterone (DHT), implicated in the development of androgenetic alopecia, DPCs were stimulated with DHT in the presence and absence of vanillic acid for 24 h. Western blotting and confocal microscopy analyses showed that the decreased level of ß-catenin after the incubation with DHT was reversed by vanillic acid. These results suggest that vanillic acid could stimulate anagen and alleviate hair loss by activating the PI3K/Akt and Wnt/ß-catenin pathways in DPCs.

15.
Nutrients ; 12(5)2020 May 08.
Article in English | MEDLINE | ID: mdl-32397306

ABSTRACT

Anticancer effects of L-ascorbic acid (Vitamin C, L-AA) have been reported in various types of cancers. L-AA intake reduces breast cancer recurrence and mortality; however, the role of L-AA in the treatment of breast cancer remains poorly understood. In this study, we investigated the effect and mechanism action of L-AA on breast cancer growth. L-AA inhibited the growth of breast cancer cells by inducing apoptotic cell death at the evaluated treatment concentrations without affecting normal cells. Moreover, L-AA induces autophagosome formation via regulation of mammalian target of rapamycin (mTOR), Beclin1, and autophagy-related genes (ATGs) and increased autophagic flux. Notably, we observed that L-AA increased p62/SQSTM1 (sequestosome 1) protein levels. Accumulation of p62 protein in cancer cells in response to stress has been reported, but its role in cancer regulation remains controversial. Here, we demonstrated that L-AA-induced p62 accumulation is related to L-AA-induced breast cancer growth inhibition. Furthermore, L-AA induced endoplasmic reticulum (ER) stress via the IRE-JNK-CHOP (inositol-requiring endonuclease-c-Jun N-terminal kinase-C/EBP homologous protein) signaling pathways, which increased the nuclear levels of p62/SQSTM1. These findings provide evidence that L-AA-induced ER stress could be crucial for p62 accumulation-dependent cell death, and L-AA can be useful in breast cancer treatment.


Subject(s)
Ascorbic Acid/pharmacology , Breast Neoplasms/genetics , Cell Nucleus/metabolism , Endoplasmic Reticulum Stress/drug effects , Signal Transduction/drug effects , Breast Neoplasms/pathology , Cell Death/drug effects , Cell Line, Tumor , Endoribonucleases/metabolism , Female , Humans , JNK Mitogen-Activated Protein Kinases/metabolism , RNA-Binding Proteins/metabolism , Sequestosome-1 Protein/metabolism , Transcription Factor CHOP/metabolism
16.
Ann Clin Lab Sci ; 50(1): 31-44, 2020 Jan.
Article in English | MEDLINE | ID: mdl-32161010

ABSTRACT

The microbiome has recently become a key interest for cancer research. Anti-tumor effects of reinforced clostridium media (RCM) were investigated for all ingredients of RCM, which showed that yeast extract could be a candidate for this phenomenon. MTT assay, cell counting, cell death analysis, cell cycle analysis, and Western blotting were done on colorectal cancer cells with or without 5-fluorouracil resistance (SNU-C5 and SNU-C5/5-FUR). Yeast extract treatment showed dose- and time-dependent anti-tumor effects on SNU-C5 and SNU-C5/5-FUR. Anti-tumor effects were related to G0/G1 phase arrest with increased p21, reactive oxygen species scavenger activities, and decreased free iron. Yeast extract treatment significantly increased apoptosis, which was effectively blocked with the PARP inhibitor. Anti-tumor effects of yeast extract were correlated with the increased phosphorylation of p38 and p53. These results suggest that yeast extract might inhibit the proliferation of colorectal cancer cells via the activation of the p38-p53-p21 cascade.


Subject(s)
Antineoplastic Agents/pharmacology , Apoptosis , Cell Cycle Checkpoints , Colorectal Neoplasms/drug therapy , Complex Mixtures/pharmacology , Yeasts/chemistry , Antimetabolites, Antineoplastic/pharmacology , Cell Proliferation , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/pathology , Drug Resistance, Neoplasm/drug effects , Fluorouracil/pharmacology , Humans , Reactive Oxygen Species/metabolism , Signal Transduction , Tumor Cells, Cultured , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism , Yeasts/physiology , p38 Mitogen-Activated Protein Kinases/genetics , p38 Mitogen-Activated Protein Kinases/metabolism
17.
Sci Rep ; 10(1): 335, 2020 01 15.
Article in English | MEDLINE | ID: mdl-31942007

ABSTRACT

The free-living amoebae Naegleria spp. and Acanthamoeba spp. exist in the natural environment and are sometimes causal agents of lethal primary amoebic meningoencephalitis (PAM), amoebic keratitis (AK) and granulomatous amebic encephalitis (GAE) in humans, respectively. To ascertain the existence of free-living amoebae in Korea, water samples were collected from the Korean hydrosphere, Namhangang (southern Han River), an active location for water skiing and recreation. Samples underwent two-step filtration and were cultured on non-nutrient agar medium with inactivated E. coli. The remaining samples were subjected to PCR for primarily the 18S small ribosomal RNA gene and gene sequencing. Similarities in 18S rDNA sequences, in comparison with various reference amoebae in GenBank, showed 86~99% homology with N. gruberi, N. philippinensis, N. clarki, A. polyphaga, A. castellannii, and Hartmannella (Vermamoeba) vermiformis. Therefore, this study will be useful for seasonal detection of free-living amoebae from various Korean hydrospheres in future studies.


Subject(s)
Amoeba/metabolism , Rivers/parasitology , Amoeba/classification , Amoeba/genetics , Amoeba/isolation & purification , Base Sequence , Phylogeny , RNA, Ribosomal, 18S/chemistry , RNA, Ribosomal, 18S/classification , RNA, Ribosomal, 18S/genetics , Republic of Korea , Sequence Alignment , Sequence Analysis, DNA
18.
Korean J Parasitol ; 57(3): 217-223, 2019 Jun.
Article in English | MEDLINE | ID: mdl-31284343

ABSTRACT

Acanthamoeba castellanii has ubiquitous distribution and causes primary acanthamoebic keratitis (AK). AK is a common disease in contact lens wearers and results in permanent visual impairment or blindness. In this study, we observed the cytopathic effect, in vitro cytotoxicity, and secretion pattern of cytokines in human corneal epithelial cells (HCECs) induced by A. castellanii trophozoites and/or cysts. Morphological observation revealed that panked dendritic HCECs co-cultured with amoeba cysts had changed into round shape and gradually died. Such changes were more severe in co-culture with cyst than those of co-cultivation with trophozoites. In vitro cytotoxicity assay revealed the highest cytotoxicity to HCECs in the co-culture system with amoeba cysts. A. castellanii induced the expression of IL-1α, IL-6, IL-8, and CXCL1 in HCECs. Secreted levels of IL-1α, IL-6, and IL-8 in HCECs co-cultured with both trophozoites and cysts were increased at an early incubation time (3 and 6 hr). These results suggested that cytopathic changes and pro-inflammatory cytokines release of HCECs in response to A. castellanii, especially amoebic cysts, are an important mechanism for AK development.


Subject(s)
Acanthamoeba Keratitis/immunology , Acanthamoeba castellanii/physiology , Cornea/cytology , Epithelial Cells/immunology , Trophozoites/physiology , Acanthamoeba Keratitis/parasitology , Acanthamoeba castellanii/growth & development , Cells, Cultured , Cornea/immunology , Cornea/parasitology , Epithelial Cells/parasitology , Humans , Interleukin-1/genetics , Interleukin-1/immunology , Interleukin-6/genetics , Interleukin-6/immunology , Interleukin-8/genetics , Interleukin-8/immunology , Trophozoites/growth & development
19.
Toxicol Res ; 35(3): 279-285, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31341557

ABSTRACT

In this study, we investigated the therapeutic potential of Cinnamomum camphora leaves on allergic skin inflammation such as atopic dermatitis. We evaluated the effects of C. camphora leaves on human adult low-calcium high-temperature keratinocytes and atopic dermatitis mice. C. camphora leaves inhibited Macrophage-derived chemokine (an inflammatory chemokine) production in interferon-γ (10 ng/mL) stimulated Human adult low-calcium high-temperature keratinocytes in a dose dependent manner. C. camphora leaves suppressed the phosphorylation of janus kinase signal transducer and activator of transcription 1. C. camphora leaves also suppressed the phosphorylation of extracellular signal-regulated kinase 1/2, a central signaling molecule in the inflammation process. These results suggest that C. camphora leaves exhibits anti-inflammatory effect via the phosphorylation of signal transducer and activator of transcription 1 and extracellular signal-regulated kinase 1/2. To study the advanced effects of C. camphora leaves on atopic dermatitis, we induced experimental atopic dermatitis in mice by applying 2,4-dinitrochlorobenzene. The group treated with C. camphora leaves (100 mg/kg) showed remarkable improvement of atopic dermatitis symptoms: reduced serum immunoglobulin E levels, smaller lymph nodes with reduced thickness and length, decreased ear edema, and reduced levels of inflammatory cell infiltration in the ears. Interestingly, the effects of C. camphora leaves on atopic dermatitis symptoms were stronger than those of hydrocort cream, a positive control. Taken together, C. camphora leaves showed alleviating effects on the inflammatory chemokine production in vitro and atopic dermatitis symptoms in vivo. These results suggest that C. camphora leaves help in the treatment of allergic inflammation such as atopic dermatitis.

20.
Parasite Immunol ; 41(8): e12631, 2019 08.
Article in English | MEDLINE | ID: mdl-31077592

ABSTRACT

Free-living amoeba, Naegleria fowleri, destroys target cells through contact-dependent mechanisms, such as phagocytosis and/or trogocytosis. A previous experiment showed that the nf-actin gene consisted of 1.2 kbp, produced a 50.1 kDa recombinant protein (Nf-actin), and was localized on the cytoskeleton, pseudopodia and amoebastome. In this study, cellular characterization of the nf-actin gene concerned with contact-dependent mechanisms in N fowleri was performed. The nf-actin gene was amplified from a gene-cloned vector, pEXQP5-T7/NT TOPO. The nf-actin gene was introduced into the Ubi-pEGFP-C2 vector, and Ubi-pEGFP-C2/nf-actin was transfected into N fowleri trophozoites. Strong GFP fluorescence was detected in N fowleri trophozoites transfected with Ubi-pEGFP-C2/nf-actin. Expression of EGFP-Nf-actin protein was detected by Western blot analysis. The nf-actin-overexpressing N fowleri showed significantly increased adhesion activity against extracellular matrix components, fibronectin, collagen I and fibrinogen, compared with wild-type N fowleri. Moreover, nf-actin-overexpressing N fowleri showed increased phagocytic activity and cytotoxicity in comparison with wild-type N fowleri. In summary, the overexpressed nf-actin gene has an important function in ability to increase cell adhesion, cytotoxicity and phagocytosis by N fowleri.


Subject(s)
Actins/metabolism , Central Nervous System Protozoal Infections/parasitology , Naegleria fowleri/metabolism , Actins/genetics , Animals , CHO Cells , Central Nervous System Protozoal Infections/genetics , Central Nervous System Protozoal Infections/metabolism , Cloning, Molecular , Cricetinae , Cricetulus , Fibronectins/genetics , Fibronectins/metabolism , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Humans , Naegleria fowleri/genetics , Naegleria fowleri/growth & development , Protein Transport , Trophozoites/genetics , Trophozoites/growth & development , Trophozoites/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...