Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Chemosphere ; 283: 131174, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34146886

ABSTRACT

Large particulate photocatalysts allow efficient recovery or installation into the substrate, while limiting possible light-catalyst interaction or mass/charge-transfer. In this study, we developed monodisperse organic single-crystal monoliths with controllable dimensions in the range of 10-100 µm. These were prepared on a 10-g scale by a solution-processed molecular cooperative assembly between melamine (M) and trithiocyanuric acid (TCA) and then transformed into the corresponding g-CN (MTCA-CN) by thermal polycondensation. Molecular precursors that are tightly bound in the crystal undergo polycondensation without losing their macroscopic properties depending on the dimensions of MTCA, thereby changing the microstructure, electronic structure, and photocatalytic activity. Such dimensional tunability enables the fulfillment of various catalytic requirements such as particle size, light absorption, charge separation, band edge potential, and mass transfer. As a proof-of-concept, it was shown that MTCA-CN is tailored to have a high rate of evolution of hydrogen (3.19 µmol/h) from glucose via photoreforming under AM1.5G by using MTCA-100 crystals, leading to the formation of g-CN with the more positive highest occupied molecular orbital (HOMO) level. This study highlights the possibility of developing photocatalysts for practical use and obtaining value-added products (VAPs) without losing the photocatalytic activity relevant for wastewater treatment.


Subject(s)
Glucose , Sunlight , Graphite , Hydrogen , Nitriles , Nitrogen Compounds
2.
Chemosphere ; 275: 130020, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33677268

ABSTRACT

In this study, sludges generated from Ti-based flocculation of dye wastewater were used to retrieve photoactive titania (S-TiO2). It was heterojunctioned with graphitic carbon nitride (g-CN) to augment photoactivity under UV/visible light irradiance. Later the as-prepared samples were utilized to remove nitrogen oxides (NOx) in the atmospheric condition through photocatalysis. Heterojunction between S-TiO2 and g-CN was prepared through facile calcination (@550 °C) of S-TiO2 and melamine mix. Advanced sample characterization was carried out and documented extensively. Successful heterojunction was confirmed from the assessment of morphological and optical attributes of the samples. Finally, the prepared samples' level of photoactivity was assessed through photooxidation of NOx under both UV and visible light irradiance. Enhanced photoactivity was observed in the prepared samples irrespective of the light types. After 1 h of UV/visible light-based photooxidation, the best sample STC4 was found to remove 15.18% and 9.16% of atmospheric NO, respectively. In STC4, the mixing ratio of S-TiO2, to melamine was maintained as 1:3. Moreover, the optical bandgap of STC4 was found as 2.65 eV, where for S-TiO2, it was 2.83 eV. Hence, the restrained rate of photogenerated charge recombination and tailored energy bandgap of the as-prepared samples were the primary factors for enhancing photoactivity.


Subject(s)
Sewage , Wastewater , Graphite , Nitrogen Compounds , Titanium
3.
Nanomaterials (Basel) ; 11(2)2021 Feb 05.
Article in English | MEDLINE | ID: mdl-33562661

ABSTRACT

The lithium-polysulfide (LiPS) dissolution from the cathode to the organic electrolyte is the main challenge for high-energy-density lithium-sulfur batteries (LSBs). Herein, we present a multi-functional porous carbon, melamine cyanurate (MCA)-glucose-derived carbon (MGC), with superior porosity, electrical conductivity, and polysulfide affinity as an efficient sulfur support to mitigate the shuttle effect. MGC is prepared via a reactive templating approach, wherein the organic MCA crystals are utilized as the pore-/micro-structure-directing agent and nitrogen source. The homogeneous coating of spherical MCA crystal particles with glucose followed by carbonization at 600 °C leads to the formation of hierarchical porous hollow carbon spheres with abundant pyridinic N-functional groups without losing their microstructural ordering. Moreover, MGC enables facile penetration and intensive anchoring of LiPS, especially under high loading sulfur conditions. Consequently, the MGC cathode exhibited a high areal capacity of 5.79 mAh cm-2 at 1 mA cm-2 and high loading sulfur of 6.0 mg cm-2 with a minor capacity decay rate of 0.18% per cycle for 100 cycles.

4.
Nanomaterials (Basel) ; 12(1)2021 Dec 21.
Article in English | MEDLINE | ID: mdl-35009960

ABSTRACT

To prevent global warming, ESS development is in progress along with the development of electric vehicles and renewable energy. However, the state-of-the-art technology, i.e., lithium-ion batteries, has reached its limitation, and thus the need for high-performance batteries with improved energy and power density is increasing. Lithium-sulfur batteries (LSBs) are attracting enormous attention because of their high theoretical energy density. However, there are technical barriers to its commercialization such as the formation of dendrites on the anode and the shuttle effect of the cathode. To resolve these issues, a boron nitride nanotube (BNNT)-based separator is developed. The BNNT is physically purified so that the purified BNNT (p-BNNT) has a homogeneous pore structure because of random stacking and partial charge on the surface due to the difference of electronegativity between B and N. Compared to the conventional polypropylene (PP) separator, the p-BNNT loaded PP separator prevents the dendrite formation on the Li metal anode, facilitates the ion transfer through the separator, and alleviates the shuttle effect at the cathode. With these effects, the p-BNNT loaded PP separators enable the LSB cells to achieve a specific capacity of 1429 mAh/g, and long-term stability over 200 cycles.

5.
Chemosphere ; 262: 128004, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33182076

ABSTRACT

For the purpose of atmospheric NO removal, anatase TiO2/g-CN photocatalytic composites were prepared by using a facile template-free calcination route in atmospheric conditions. Considerably fiscal NP400 and laboratory-grade melamine were used as the precursor of the composites. Additionally, samples were prepared with different wt. ratios of TiO2 and melamine by using two distinct calcination temperatures (550 °C/600 °C). The morphological attributes of the composites were assessed with X-ray diffraction, scanning and transmission electron microscopy, infrared spectroscopy, and X-ray photoelectron spectroscopy. Additionally, the optical traits were evaluated and compared using UV-visible diffuse reflectance spectroscopy and photoluminescence analysis. Finally, the photodegradation potentials for atmospheric NO by using the as-prepared composites were assessed under both UV and visible light irradiation. All the composites showed superior NO oxidation compared to NP400 and bulk g-CN. For the composites prepared by using the calcination temperature of 550 °C, the maximum NO removal was observed when the NP400 to melamine ratio was 1:2, irrespective of the utilized light irradiation type. Whereas for increased calcination temperature (600 °C), the maximum NO removal was observed at the precursor mix ratio of 1:3 (NP400:melamine). Successfully narrowed energy bandgaps were perceived in the as-prepared composites. Moreover, a subsequent drop in NO2 generation during NO oxidation was observed under both UV and visible light irradiation. Interestingly, higher calcination temperature during the synthesis of the catalysts has shown a significant drop in NO2 generation during the photodegradation of NO.


Subject(s)
Air Pollutants/analysis , Graphite/chemistry , Nitriles/chemistry , Nitrogen Oxides/analysis , Titanium/chemistry , Ultraviolet Rays , Catalysis , Microscopy, Electron, Transmission , Oxidation-Reduction , Photoelectron Spectroscopy , Photolysis , Surface Properties , Temperature , X-Ray Diffraction
6.
Nanomaterials (Basel) ; 10(10)2020 Oct 12.
Article in English | MEDLINE | ID: mdl-33053839

ABSTRACT

Rechargeable lithium-sulfur batteries (LSBs) are emerging as some of the most promising next-generation battery alternatives to state-of-the-art lithium-ion batteries (LIBs) due to their high gravimetric energy density, being inexpensive, and having an abundance of elemental sulfur (S8). However, one main, well-known drawback of LSBs is the so-called polysulfide shuttling, where the polysulfide dissolves into organic electrolytes from sulfur host materials. Numerous studies have shown the ability of porous carbon as a sulfur host material. Porous carbon can significantly impede polysulfide shuttling and mitigate the insulating passivation layers, such as Li2S, owing to its intrinsic high electrical conductivity. This work suggests a scalable and straightforward one-step synthesis method to prepare a unique interconnected microporous and mesoporous carbon framework via salt templating with a eutectic mixture of LiI and KI at 800 °C in an inert atmosphere. The synthesis step used environmentally friendly water as a washing solvent to remove salt from the carbon-salt mixture. When employed as a sulfur host material, the electrode exhibited an excellent capacity of 780 mAh g-1 at 500 mA g-1 and a sulfur loading mass of 2 mg cm-2 with a minor capacity loss of 0.36% per cycle for 100 cycles. This synthesis method of a unique porous carbon structure could provide a new avenue for the development of an electrode with a high retention capacity and high accommodated sulfur for electrochemical energy storage applications.

7.
ChemSusChem ; 13(3): 574-581, 2020 Feb 07.
Article in English | MEDLINE | ID: mdl-31777180

ABSTRACT

The growing demand for rechargeable batteries with high energy density has triggered research on batteries based on polyvalent cations such as Ca2+ , Mg2+ , Al3+ , and Y3+ . Ca is, in particular, a promising anode material as an alternative to Li because of its mechanical strength (ρ=1.55 g cm-3 ), safety in terms of thermal runaway (m.p.=839 °C), earth-abundance (world production of 150 million tons of gypsum in 2012), high specific charge capacity (1.340 mAh g-1 or 2.077 mAh cm-3 ), and standard reduction potential (-2.87 V vs. normal hydrogen electrode, NHE) comparable to that of Li. As with Mg, the practical application of Ca in rechargeable batteries with organic liquid electrolytes has been hindered by the passivation layer resulting from undesirable reactions between metallic Ca and electrolytes, which precludes the possibility of reversible plating of any metal cations on Ca electrodes. Here, a battery system based on intermetallic CaLi2 anodes was developed. Li was used as a host for Ca through the formation of an intermetallic compound, which simultaneously enabled 1) the assembly of a rechargeable battery system with Ca anodes and liquid organic electrolytes and 2) coupling these with an earth-abundant, high-energy-density air cathode without special passivation agents. This strategy is simple and broadly applicable to the other polyvalent cations listed above, opening a new avenue to further engineer the electrode materials required for practical, efficient electrochemical energy-storage systems.

8.
Nanomaterials (Basel) ; 9(11)2019 Nov 13.
Article in English | MEDLINE | ID: mdl-31766243

ABSTRACT

Although numerous research efforts have been made for the last two decades, the chronic problems of lithium-sulphur batteries (LSBs), i.e., polysulfide shuttling of active sulphur material and surface passivation of the lithium metal anode, still impede their practical application. In order to mitigate these issues, we utilized polyimide functionalized glass microfibers (PI-GF) as a functional separator. The water-soluble precursor enabled the formation of a homogenous thin coating on the surface of the glass microfiber (GF) membrane with the potential to scale and fine-tune: the PI-GF was prepared by simple dipping of commercial GF into an aqueous solution of poly(amic acid), (PAA), followed by thermal imidization. We found that a tiny amount of polyimide (PI) of 0.5 wt.% is more than enough to endow the GF separator with useful capabilities, both retarding polysulfide migration. Combined with a free-standing microporous carbon cloth-sulphur composite cathode, the PI-GF-based LSB cell exhibits a stable cycling over 120 cycles at a current density of 1 mA/cm2 and an areal sulphur loading of 2 mgS/cm2 with only a marginal capacity loss of 0.099%/cycle. This corresponds to an improvement in cycle stability by 200%, specific capacity by 16.4%, and capacity loss per cycle by 45% as compared to those of the cell without PI coating. Our study revealed that a simple but synergistic combination of porous carbon supporting material and functional separator enabled us to achieve high-performance LSBs, but could also pave the way for the development of practical LSBs using the commercially viable method without using complicated synthesis or harmful and expensive chemicals.

9.
ACS Nano ; 13(10): 11935-11946, 2019 Oct 22.
Article in English | MEDLINE | ID: mdl-31577414

ABSTRACT

Although sodium hybrid capacitors (NHCs) have emerged as one of the most promising next-generation energy storage systems, further advancement is delayed primarily by the absence of high-performance battery-type anodes. Herein, we report a nature-inspired synthesis route to prepare hard carbon anodes with high capacity, rate capability, and cycle stability for dual-carbon NHCs. Shape- and size-controllable crystal aggregates of inexpensive triazine molecules are utilized as reactive templates that perform triple duties of structure-directing agent, porogen, and nitrogen source. This enables the fine control of microstructure/morphology/composition and thereby electrochemical reactions toward Na-ion. The resulting hard carbon optimized in terms of lateral size, interlayer spacing, and surface affinity of graphene-like layers achieves a specific capacity of ∼380 mAh/g after 100 cycles at a current density of 250 mA/g mainly via intercalation, the current record of hard carbons. Combined with a commercial microporous carbon fiber cathode, the full cell is able to deliver a volumetric energy density of 2.89 mWh/cm3 and a volumetric power density of 160 mW/cm3, outperforming NHCs based on inorganic Na-ion anode materials. More importantly, such performance could not only be retained for 10000 cycles (4.5 F/cm3 at 10 mA/cm3) with 0.000 028 6% loss per cycle at >97% Coulombic efficiency but also successfully transferred to flexible pouch cells without significant performance loss after 300 bending cycles or during wrapping at a 10R condition. Simple preparation of hard carbon anodes using organic crystal reactive templates, therefore, demonstrates great potential for the manufacture of high-performance flexible NHCs using only carbon electrode materials.

SELECTION OF CITATIONS
SEARCH DETAIL
...